Bulletin (New Series) of the American Mathematical Society

The dynamical systems approach to differential equations

Morris W. Hirsch

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 11, Number 1 (1984), 1-64.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 00A25 00A99: Miscellaneous topics 01A45: 17th century 01A55: 19th century 01A60: 20th century 34A40: Differential inequalities [See also 26D20] 34C35 34D10: Perturbations 34D30: Structural stability and analogous concepts [See also 37C20] 35B05: Oscillation, zeros of solutions, mean value theorems, etc. 35B35: Stability 35B40: Asymptotic behavior of solutions 35B50: Maximum principles 35B30: Dependence of solutions on initial and boundary data, parameters [See also 37Cxx] 35K55: Nonlinear parabolic equations 54H20: Topological dynamics [See also 28Dxx, 37Bxx] 58F25 58F40 58F12 58F10 58D25: Equations in function spaces; evolution equations [See also 34Gxx, 35K90, 35L90, 35R15, 37Lxx, 47Jxx] 58D07: Groups and semigroups of nonlinear operators [See also 17B65, 47H20] 46A40: Ordered topological linear spaces, vector lattices [See also 06F20, 46B40, 46B42] 46E10: Topological linear spaces of continuous, differentiable or analytic functions 47H07: Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces 47H20: Semigroups of nonlinear operators [See also 37L05, 47J35, 54H15, 58D07] 92A15 92A17
Secondary: 06F30: Topological lattices, order topologies [See also 06B30, 22A26, 54F05, 54H12] 35B65: Smoothness and regularity of solutions 58F13 35J60: Nonlinear elliptic equations 46E05: Lattices of continuous, differentiable or analytic functions 92–03 90–03 90A16


Hirsch, Morris W. The dynamical systems approach to differential equations. Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 1--64. https://projecteuclid.org/euclid.bams/1183551833

Export citation


  • R. Abraham, 1971 Predictions for the future of differential equations, Lecture Notes in Math., vol. 206 (D. Chillingworth, ed.), Springer-Verlag.
  • R. Abraham and J. Marsden, 1967 Foundation of mechanics, Benjamin, New York.
  • R. Abraham and J. Marsden, 1978 Foundation of mechanics, 2nd ed., Benjamin/Cummings, Reading, Mass.
  • R. Abraham and C. Shaw, 1982 Dynamics–The geometry of behavior, Aerial Press, Santa Cruz, Calif.
  • M. Amman, 1976 Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18, 620-709.
  • A. A. Andronov and L. Pontryagin, 1937 Systèmes grossiers, Dokl. Akad. Nauk. SSSR 14, 247-251.
  • D. V. Anosov, 1962 Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Soviet Math. Dokl. 3, 1068-1070.
  • D. V. Anosov, 1967 Geodesic flows on closed Riemannian manifolds with negative curvature, Trudy Mat. Inst. Steklov 90, 3-209; English transl. in Proc. Steklov. Inst. Math. (I. G. Petrovskiĭ and S. M. Nikol´skiĭ, eds.), Amer. Math. Soc., Providence, R. I., 1969.
  • V. I. Arnold, 1983 Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., vol. 250, Springer-Verlag.
  • G. Aronsson and I. Mellander, 1980 A deterministic model in biomathematics: asymptotic behavior and threshold conditions, Math. Biosci. 49, 207-222.
  • D. Berlinski, 1976 On systems analysis, MIT Press, Cambridge, Mass.
  • G. D. Birkhoff, 1920 Recent advances in dynamics, Science (N.S.) 51, 51-55 and Collected mathematical papers, vol. 2, Amer. Math. Soc., Providence, R. I., pp. 106-110.
  • G. D. Birkhoff, 1927 Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I.; reprinted 1966.
  • G. D. Birkhoff, 1927a On the periodic motion of dynamical systems, Acta Math. 50, 359-379 and Collected mathematical papers, vol. 2, op. cit., pp. 333-353.
  • G. D. Birkhoff, 1932 Sur l’existence de régions d’instabilité en dynamique, Ann. Inst. H. Poincaré 2, 369-386 and Collected mathematical papers, vol. 2, op. cit., pp. 444-461.
  • G. D. Birkhoff, 1935 Sur le problème restreint des trois corps (premiere mèmoire), Ann. Scuola Norm. Sup. Pisa (2) 4, 267-306 and Collected mathematical papers, vol. 2, op. cit., pp. 466-306.
  • G. D. Birkhoff, 1941 Some unsolved problems of theoretical dynamics, Science 94, 598-600 and Collected mathematical papers, vol. 2, op. cit., pp. 710-712.
  • G. D. Birkhoff, 1935a Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Nov. Lyn. 1, 85-216 and Collected mathematical papers, vol. 2, op. cit., pp. 530-661.
  • G. D. Birkhoff, 1943 The mathematical nature of physical theories, Amer. Sci. 31, 281-310 and Collected mathematical papers, vol. 2, op. cit., pp. 890-919.
  • G. D. Birkhoff, 1950 Collected mathematical papers, vols. 1, 2, 3, Amer. Math. Soc., Providence, R. I.
  • G. D. Birkhoff and B. O. Koopman, 1932 Recent contributions to ergodic theory, Proc. Nat. Acad. Sci. U.S.A. 18, 279-282 and Collected mathematical papers, op. cit., vol. 3, pp. 462-465.
  • L. E. J. Brouwer, 1907 On the foundation of mathematics, Collected Mathematical Works, Vol. 1, American Elsevier, New York.
  • L. E. J. Brouwer, 1913 Intuitionism and formalism, Bull. Amer. Math. Soc. 20, 81-96; Collected works, Vol. 1, op. cit., pp. 123-138.
  • L. E. J. Brouwer, 1975 Collected works, Vol. 1 (A. Heyting, ed.), American Elsevier, New York.
  • J. L. Casti, 1982 Recent developments and future perspectives in nonlinear systems theory, SIAM Rev. 24, 301-331.
  • T. M. Cherry, 1938 Analytic quasi-periodic curves of discontinuous type on a torus, Proc. London Math. Soc. (2) 44, 175-215.
  • T. M. Cherry, 1968 Asymptotic solutions of analytic Hamiltonian systems, J. Differential Equations 4, 142-159.
  • W. A. Coppel, 1965 Stability and asymptotic behavior of differential equations, Heath, Boston.
  • J. Coste, J. Peyraud and P. Coullet, 1979 Asymptotic behaviors in the dynamics of competing species, SIAM J. Appl. Math. 36 (1979), 516-543.
  • D´Alembert and Diderot (Editors), 1754 Encyclopédie, Vol. 4, Briasson, David, LeBreton, Durand, Paris.
  • Darwin, 1892 Life of Charles Darwin (F. Darwin, ed.), John Murray, London.
  • Darwin, 1936 The origin of species and The descent of man, Modern Library, New York.
  • A. Denjoy, 1932 Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (4) 17, 333-375.
  • S. Drake, 1978 Galileo at work, Univ. of Chicago Press, Chicago, Ill.
  • A. S. Eddington, 1927 The nature of the physical world, Cambridge Univ. Press, Cambridge, England.
  • A. Einstein, 1930 On the occasion of the three hundredth anniversary of Kepler’s death, Frankfurter Zeitung, November 9, 1930 and Ideas and opinions, Crown, New York, 1954.
  • A. Einstein, 1931 On the one hundreth anniversary of Maxwell’s birth, James Clerk Maxwell: A Commemorative Volume, Cambridge Univ. Press, Cambridge, England, and Ideas and opinions, op. cit.
  • J. M. Franks, 1982 Homology and dynamical systems, CBMS Regional Conf. Ser. in Math., Vol. 49, Amer. Math. Soc., Providence, R. I.
  • H. I. Freedman, 1980 Deterministic mathematical models in population ecology, Dekker, New York.
  • H. I. Freedman and P. Waltman, 1984 Persistence in models of three interacting species, Math. Biosci. (in press).
  • N. Georgescu-Roegen, 1966 Analytical economics: Issues and problems, Harvard Univ. Press, Cambridge, Mass.
  • C. C. Gillispie, 1960 The edge of objectivity, Princeton Univ. Press, Princeton, N. J.
  • W. H. Gottschalk and G. A. Hedlund, 1955 Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I.
  • S. Grossberg, 1978 Competition, decision and consensus, J. Math. Anal. Appl. 66, 470-493.
  • J. Guckenheimer, 1976 A strange strange attractor, The Hopf Bifurcation and Its Applications (J. E. Marsden and M. McCracken, eds.), Springer-Verlag, pp. 368-381.
  • J. Guckenheimer, 1982 Noise in chaotic systems, Nature 298, 358-361.
  • J. Guckenheimer and G. Buzyna, 1983 Dimension measurements for geostrophic turbulence, Phys. Rev. Lett. 51, 1438-1441.
  • J. Guckenheimer And P. Holmes, 1983 Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Math. Sci., Vol. 42, Springer-Verlag.
  • J. Hadamard, 1912 L’oeuvres mathématique de Henri Poincaré, Acta Math. 38, 203-287; and Oeuvres de Jacques Hadamard4, CNRS, Paris, pp. 1921-2005.
  • J. Hadamard, 1912a Henri Poincaré et le problème de trois corps, Rev. Mois 16, 385-418 and Oeuvres de Jacques Hadamard, op. cit., pp. 2007-2041.
  • J. Hadamard, 1968 Oeuvres de Jacques Hadamard4, CNRS, Paris.
  • J. K. Hale, 1963 Oscillations in nonlinear systems, McGraw-Hill, New York.
  • T. L. Hankins, 1980 Sir William Rowan Hamilton, Johns Hopkins Univ. Press, Baltimore.
  • B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, 1980 Theory and application of the Hopf bifurcation, Cambridge Univ. Press, Cambridge, England.
  • R. Heilbroner, 1953 The worldly philosphers, Simon and Schuster, New York.
  • D. Henry, 1981 Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag.
  • H. W. Hethcote, 1973 Asymptotic behavior in a deterministic epidemic model, J. Math. Biol. 35, 607-614.
  • H. Hethcote, A. Nold and L. Yorke, 1982 Gonorrhea modelling: a comparison of control methods, Math. Biosci. 58, 93-109.
  • M. W. Hirsch, 1983 Differential equations and convergence almost everywhere in strongly monotone flows, Contemporary Math., vol. 17, Amer. Math. Soc., Providence, R. I., pp. 267-285.
  • M. W. Hirsch, 1983a Systems of differential equations which are competitive or cooperative. II: Convergence almost everywhere, SIAM J. Math. Anal. (in press); preprint, Center for Pure and Appl. Math., Univ. of California, Berkeley.
  • M. W. Hirsch, 1982 Systems of differential equations which are competitive or cooperative. I: Limit sets, SIAM J. Math. Anal. 13, 167-179.
  • S. B. Hsu, S. P. Hubbell And P. Waltman, 1978 Competing predators, SIAM J. Appl. Math. 35, 617-625.
  • E. Kamke, 1932 Zur Theorie der Systeme gewöhnlicher differential-gleichungen. II, Acta Math. 58, 57-85.
  • F. Klein, 1911 Lectures on mathematics (Proc. Colloq., Evanston, 1893), Amer. Math. Soc., Providence, R. I.
  • A. Kolmogorov, 1936 Sulla teoria di Volterra della lotta per l´esistenzia, Giorn. Ist. Ital. Attuari 7, 47-80.
  • I. Kupka, 1963 Contribution à la théorie des champs génériques, Contributions to Differential Equations 2, 457-484.
  • A. Lajmanovich and J. Yorke, 1976 A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28, 221-236.
  • W. Leonard and R. May, 1975 Nonlinear aspects of competition between species, SIAM J. Appl. Math. 29, 243-275.
  • S. Lie, 1895 Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung, Leipziger Berichte 47, 53-128 and Sophus Lie Gesammelte Abhandlungen (F. Engel, ed.), Bd. 4, Teubner, Leipzig, 1929, pp. 320-386.
  • E. N. Lorenz, 1963 Deterministic non-periodic flow, J. Atmospheric Sci. 20, 130-141.
  • A. Lotka, 1956 Principles of mathematical biology, Dover, New York.
  • J. E. Marsden and M. McCracken (Editors), 1976 The Hopf bifurcation and its applications, Springer-Verlag.
  • X. Mora, 1983 Semilinear problems define semiflows in Ck-spaces, Trans. Amer. Math. Soc. 278, 21-55.
  • R. E. Moritz, 1914 Memorabilia mathematica, Macmillan, New York; reprinted as On mathematics and mathematicians, Dover, New York, 1958.
  • J. Moser, 1973 Stable and random motions in dynamical systems, Princeton Univ. Press, Princeton, N. J.
  • S. Newhouse, 1971 Nondensity of axiom A(a), Global Analysis, Proc. Sympos. Pure Math, vol. 14 (S.-S. Chern and S. Smale, eds.), Amer. Math. Soc., Providence, R. I., pp. 191-203.
  • S. Newhouse, 1979 The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 50, 101-151.
  • S. Newhouse, 1980 Lectures on dynamical systems, Dynamical Systems (CIME Summer School, Bressanone, 1978), Birkhäuser, Boston, pp. 1-114.
  • H. G. Othmer, 1976 The qualitative dynamics of a class of biochemical control circuits, J. Math. Biol. 3, 53-78.
  • J. Palis and W. Demelo, 1982 Geometric theory of dynamical systems: An introduction, Springer-Verlag.
  • J. PaLis and S. Smale, 1970 Structural stability theorems, Global Analysis, Proc. Sympos, Pure Math., vol. 14 (S.-S. Chern and S. Smale, eds.), Amer. Math. Soc., Providence, R. I.
  • S. Peirce, 1955 The philosophical writings of C. S. Peirce, Dover, New York.
  • M. Peixoto, 1962 Structural stability on 2-dimensional manifolds, Topology 1, 101-120.
  • M. Peixoto, 1973 On the classification of flows on two-manifolds, Dynamical Systems (M. Peixoto, ed.), Academic Press, New York.
  • H. Poincaré, 1881 Mémoire sur les courbes définies par une équation différentielle, J. Math. Pures Appl. 7, 375-422 and Oeuvres, Vol. 1, Gauthier-Villars, Paris.
  • H. Poincaré, 1880-1890 Sur les courbes définies par les équations différentielles. I-VI, Oeuvres, Vol. 1, op. cit.
  • H. Poincaré, 1890a Sur les équations de la dynamique et le problème de trois corps, Acta. Math. 13, 1-270.
  • H. Poincaré, 1892, 1893, 1899 Les méthodes nouvelles de la mécanique céleste, Vols. I, II, III, Gauthier-Villars, Paris.
  • H. Poincaré, 1908 Atti IV Congr. Internaz. Mat. (Roma, 1908), Vol. I, Acad. dei Lincei, Rome, 1909.
  • H. Poincaré, 1914 La valeur de la science, Flammarion, Paris.
  • H. Poincaré, 1916-1956 Oeuvres de Henri Poincaré, Vols. 1-11, Gauthier-Villars, Paris.
  • H. Poincaré, 1921 Analyse des travaux scientifiques de Henri Poincaré faites par lui-même, Acta Math. 38, 1-135 and Oeuvres, Vol. 1, op. cit.
  • G. Pólya And S. Szegö, 1971 Problems and theorems in analysis, Springer-Verlag.
  • M. Protter and H. Weinberger, 1967 Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J.
  • A. Rescigno and I. Richardson, 1967 The struggle for life. I: Two species, Bull. Math. Biophys. 29, 377-388.
  • J. Robinson, 1956 The accumulation of capital, Macmillan, London.
  • D. Ruelle and F. Takens, 1971 On the nature of turbulence, Comm. Math. Phys. 20, 167-192; ibid. 23, 343-344.
  • M. Ruse, 1979 The Darwinian revolution, Univ. of Chicago Press, Chicago, Ill.
  • B. Russell, 1948 Human knowledge, its scope and limits, Simon and Schuster, New York.
  • B. Russell, 1955 Basic writings, 1903-1959 (R. Egner and L. Denner, eds.), Simon and Schuster, New York.
  • J. F. Selgrade, 1979 Mathematical analysis of a cellular control process with positive feedback, SIAM J. Appl. Math. 36, 219-229.
  • J. F. Selgrade, 1980 Asymptotic behavior of solutions to single loop positive feedback systems, J. Differential Equations 38, 80-103.
  • L. Silk, 1976 The economists, Basic Books, New York.
  • S. Smale, 1961 On gradient dynamical systems, Ann. of Math. (2) 74, 199-206.
  • S. Smale, 1962 Dynamical systems and the topological conjugacy problem for diffeomorphisms, Proc. Internat. Congress Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 440-496.
  • S. Smale, 1963 A structurally stable differentiable homeomorphism with an infinite number of periodic points, Proc. Internat. Sympos. Nonlinear Vibrations, Izdat. Akad. Nauk. Ukrain. SSR, Kiev.
  • S. Smale, 1965 Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (S. Cairns, ed.), Princeton Univ. Press, Princeton, N. J., pp. 63-80.
  • S. Smale, 1966 Structurally stable systems are not dense, Amer. J. Math. 88, 491-495.
  • S. Smale, 1967 Differentiable dynamical systems, Bull. Amer. Math. Soc. 73, 747-817.
  • S. Smale, 1967a Dynamical systems on n-dimensional manifolds, Sympos. Differential Equations and Dynamical Systems (Puerto Rico), Academic Press, New York.
  • S. Smale, 1967b Stability and genericity of dynamical systems, Sem. Bourbaki, no. 374, 1969-1970 and The mathematics of time, Springer-Verlag, 1980.
  • S. Smale, 1976 On the differential equations of species in competition, J. Math. Biol. 3, 5-7.
  • S. Smale, 1980 The mathematics of time, Springer-Verlag.
  • M. Spivak, 1970 A comprehensive introduction to differential geometry, Vol. 1, Publish or Perish, Waltham, Mass.
  • S. Sternberg, 1969 Celestial mechanics, Part 1, Benjamin, Reading, Mass.
  • J. Strachey, 1956 Contemporary capitalism, Random House, New York.
  • J. Sylvester, 1877 Appendix to Address on Commemoration Day at Johns Hopkins University, in Collected mathematical papers of James Joseph Sylvester, Vol. 3, Cambridge Univ. Press, Cambridge, England, 1908, pp. 85-87.
  • G. Temple, 1958 Linearization and delinearization, Proc. Internat. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, Cambridge, England, pp. 233-247.
  • R. Thom, 1975 Structural stability and morphogenesis, Benjamin, Reading, Mass.; original ed., Paris, 1972.
  • W. Walter, 1970 Differential and integral inequalities, Springer-Verlag.
  • J. A. Walker, 1980 Dynamical systems and evolution equations, Plenum Press, New York.
  • H. Weyl, 1939 The classical groups: Their invariants and representations, Princeton Univ. Press, Princeton, N. J.
  • R. F. Williams, 1979 The structure of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50, 101-152.
  • R. F. Williams, 1983 Review of “Dynamical Systems on Surfaces” by C. Godbillon, Amer. Math. Monthly (in press).
  • A. Winfree, 1979 The geometric theory of biological time, Springer-Verlag.
  • J. Z. Young, 1951 Doubt and certainty in science, Oxford Univ. Press, New York.