Bulletin (New Series) of the American Mathematical Society

Review: R. V. Ambartzumian, Combinatorial integral geometry with applications to mathematical stereology

Ralph Alexander

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 10, Number 2 (1984), 318-321.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183551587

Citation

Alexander, Ralph. Review: R. V. Ambartzumian, Combinatorial integral geometry with applications to mathematical stereology. Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 318--321. https://projecteuclid.org/euclid.bams/1183551587


Export citation

References

  • 1. R. Alexander, Planes for which the lines are the shortest paths between points, Illinois J. Math. 22 (1978), 177-190.
  • 2. H. Busemann, Recent synthetic differential geometry, Ergeb. Math. Grenzgeb. no. 54, Springer-Verlag, Berlin and New York, 1970.
  • 3. L. E. Dor, Potentials and isometric embeddings in L1, Israel J. Math 24 (1976), 260-268.
  • 4. A. V. Pogorelov, Hilbert's fourth problem, Wiley, New York, 1979.
  • 5. G. Pólya and G. Szegö, Problems and theorems in analysis, Vol. II, Springer-Verlag, Berlin and New York, 1978.
  • 6. L. A. Santaló, Integral geometry and geometric probability, Addison-Wesley, Reading, Mass., 1976.
  • 7. J. J. Sylvester, On a funicular solution of Buffons "problem of the needle" in its most general form, Acta. Math. 14 (1890), 185-205.
  • 8. H. S. Witsenhausen, Metric inequalities and the zonoid problem, Proc. Amer. Math. Soc. 40 (1973), 517-520.