Bulletin (New Series) of the American Mathematical Society

Instantons, double wells and large deviations

Barry Simon

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 8, Number 2 (1983), 323-326.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35P15: Estimation of eigenvalues, upper and lower bounds 81H99
Secondary: 60J65: Brownian motion [See also 58J65]


Simon, Barry. Instantons, double wells and large deviations. Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 323--326. https://projecteuclid.org/euclid.bams/1183550128

Export citation


  • 1. S. Agmon, On exponential decay of solutions of second order elliptic equations in unbounded domains, Proc. A. Pleijel Conf.
  • 2. S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of N-body of Schrödinger operators, Math, notes, Princeton Univ. Press, Princeton, N. J., 1980.
  • 3. R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys. 80 (1981), 59-98.
  • 4. S. Coleman, The uses of instantons, Proc. Internat. School of Physics, Erice, 1977.
  • 5. S. Combes, P. Duclos and R. Seiler, Krein's formula and one dimensional multiple-well, J. Functional Analysis (to appear).
  • 6. E. Gildener and A. Patrascioiu, Pseudoparticle contributions to the energy spectrum of a one dimensional system, Phys. Rev. D16 (1977), 425-443.
  • 7. E. Harrell, On the rate of asymptotic eigenvalue degeneracy, Comm. Math. Phys. 60 (1978), 73.
  • 8. E. Harrell, Double wells, Comm. Math. Phys. 75 (1980), 239.
  • 9. M. Pincus, Gaussian processes and Hammerstein integral equations, Trans. Amer. Math. Soc. 134 (1968), 193-216.
  • 10. M. Schilder, Some asymptotic formulas for Wiener integrals, Trans. Amer. Math. Soc. 125 (1965), 63-85.
  • 11. B. Simon, Functional integration and quantum physics, Academic Press, New York, 1979.
  • 12. B. Simon, Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: Asymptotic expansions, Ann. Inst. H. Poincaré (to appear).
  • 13. B. Simon, Semiclassical analysis of low lying eigenvalues.II. Tunneling (in preparation).