Bulletin (New Series) of the American Mathematical Society

Fixed point algebras

C. Smoryński

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 6, Number 3 (1982), 317-356.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183548781

Mathematical Reviews number (MathSciNet)
MR648523

Zentralblatt MATH identifier
0544.03032

Subjects
Primary: 03–02 03G05: Boolean algebras [See also 06Exx]
Secondary: 03B45: Modal logic (including the logic of norms) {For knowledge and belief, see 03B42; for temporal logic, see 03B44; for provability logic, see also 03F45} 03F30: First-order arithmetic and fragments

Citation

Smoryński, C. Fixed point algebras. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 317--356. http://projecteuclid.org/euclid.bams/1183548781.


Export citation

References

  • 1. S. N. Artyomov, Arithmetically complete modal theories, Semiotics and Information Science, no. 14, Akad. Nauk SSR, Vsesojus. Inst. Nauč. i Tehn. Informackk, Moscow, 1980, pp. 115-133. (Russian)
  • 2. F. Bellissima, On the modal logic corresponding to diagonalizable algebra theory, Boll. Un. Math. Ital. (5) 15-B (1978), 915-930.
  • 3. C. Bernardi, The fixed-point theorem for diagonalizable algebras, Studia Logica 34 (1975), 239-251.
  • 4. C. Bernardi, On the equational class of diagonalizable algebras, Studia Logica 34 (1975), 322-331.
  • 5. C. Bernardi, The uniqueness of the fixed-point in every diagonalizable algebra, Studia Logica 35 (1976), 335-343.
  • 6. S. Feferman, Arithmetization of metamathematics in a general setting, Fund. Math. 49 (1960), 35-92.
  • 7. C. F. Gardiner, A first course in group theory, Springer-Verlag, Heidelberg, 1980.
  • 8. G. Gargov, A note on the provability logics of certain extensions of Heyting's arithmetic (to appear).
  • 9. K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I, Monatsh. Math. Phys. 38 (1931), 173-198.
  • 10. D. Guaspari, Partially conservative extensions of arithmetic, Trans. Amer. Math. Soc. 254 (1979), 47-68.
  • 11. D. Guaspari and R. M. Solovay, Rosser sentences, Ann. Math. Logic 16 (1979), 81-99.
  • 12. P. Hájek, On interpretability in set theories. I, Comment. Math. Univ. Carolin. 12 (1971), 73-79; II, ibid. 13 (1972), 445-455.
  • 13. P. Hájek, On interpretability in theories containing arithmetic. II (to appear).
  • 14. M. Hájková, The lattice of bi-numerations of arithmetic. I, Comment. Math. Univ. Carolin. 12 (1971), 81-104; II, ibid., 281-306.
  • 15. P. R. Halmos, Algebraic logic. I. monadic boolean algebras, Compositio Math. 12 (1955), 217-249.
  • 16. C. F. Kent, "Disorder" in lattices of binumerations, Comment. Math. Univ. Carolin. 15 (1974), 221-224.
  • 17. M. H. Löb, Solution of a problem of Leon Henkin, J. Symbolic Logic 20 (1955), 115-118.
  • 18. A Macintyre and H. Simmons, Gödel's diagonalisation technique and related properties of theories, Colloq. Math. 28 (1973), 165-180.
  • 19. R. Magari, Problemi aperti sulle algebre diagonali, Rend. Sem. Mat. Fis. Milano 44 (1974-1975), 75-90.
  • 20. R. Magari, Metodi algebrici in teoria della dimostrazione, Boll. Un. Math. (4) 12 (1975) 252-261.
  • 21. R. Magari, The diagonalizable algebras, Boll. Un. Math. Ital. (4) 12 (supp. fasc. 3) (1975), 117-125.
  • 22. R. Magari, Representation and duality theory for diagonalizable algebras, Studia Logica 34 (1975), 305-313.
  • 23. R. Magari, On the autological character of diagonalizable algebras, Studia Logica 35 (1976), 327-333.
  • 24. R. Magari, Modal diagonalizable algebras, Boll. Un. Math. Ital. (5) 15-B (1978), 303-320.
  • 25. L. Manevitz and J. Stavi, Δ20 operators and alternating sentences in arithmetic, J. Symbolic Logic 45 (1980), 144-154.
  • 26. M. Mirolli, On the axiomatization of finite frames of the modal system GL, Boll. Un. Math. Ital. (5) 17-B (1980), 1075-1085.
  • 27. F. Montagna, For every n, the n-freely generated algebra is not functionally free in the equational class of diagonalizable algebras, Studia Logica 34 (1975), 315-319.
  • 28. F. Montagna, On the algebraization of a Feferman's predicate, Studia Logica 37 (1978), 221-236.
  • 29. F. Montagna, On the diagonalizable algebra of Peano arithmetic, Boll. Un. Math. Ital. (5) 16-B (1979), 795-812.
  • 30. F. Montagna, Interpretations of the first-order theory of diagonalizable algebras in Peano arithmetic, Studia Logica 39 (1980), 347-354.
  • 31. F. Montagna, The undecidability of the first-order theory of diagonalizable algebras, Studia Logica 39(1980), 355-359.
  • 32. S. Orey, Relative interpretations, Z. Math. Logik Grundlag. Math. 7 (1961), 146-153.
  • 33. S. Palúch, The lattices of numerations of theories containing Peano's arithmetic, Comment. Math. Univ. Carolin. 14 (1973), 339-359.
  • 34. J. B. Rosser, Extensions of some theorems of Gödel and Church, J. Symbolic Logic 1 (1936), 87-91.
  • 35. G. Sambin, Un estensione del theorema di Löb, Rend. Sem. Math. Univ. Padova 52 (1974), 193-199.
  • 36. G. Sambin, An effective fixed-point theorem in intuitionistic diagonalizable algebras, Studia Logica 35 (1976), 345-361.
  • 37. G. Sambin, Fixed points through the finite model property, Studia Logica 37 (1978), 287-289.
  • 38. G. Sambin, Topology and categorical duality in the study of semantics for model logics (to appear).
  • 39. K. Segerberg, An essay in classical modal logic, Uppsala, 1971.
  • 40. H. Simmons, Topological aspects of suitable theories, Proc. Edinburgh Math. Soc. (2) 19 (1974-1975), 383-391.
  • 41. C. Smoryński, The incompleteness theorems, Handbook of Mathematical Logic (J. Barwise, ed.), North-Holland, Amsterdam, 1977, pp. 821-865.
  • 42. C. Smoryński, Beth's theorem and self-referential sentences, Logic Colloquium '77 (A. Macintyre. L. Pacholski, and J. Paris, eds.), North-Holland, Amsterdam, 1978.
  • 43. C. Smoryński, Calculating self-referential statements. I: explicit calculations, Studia Logica 38 (1979), 17-36.
  • 44. C. Smoryński, Calculating self-referential statements, Fund. Math. 109(1980), 189-210.
  • 45. C. Smoryński, Calculating self-referential statements: Guaspari sentences of the first kind, J. Symbolic Logic 46 (1981), 329-344.
  • 46. C. Smoryński, Fifty years of self-reference in arithmetic, Notre Dame J. Formal Logic 22 (1981), 357-374.
  • 47. C. Smoryński, A ubiquitous fixed point calculation, "Interpretability"; Proceedings of the First Joint Conference on the Foundations of Mathematics Organised by the Białystok Branch of the Warsaw University and Humboldt University (Berlin) (L. Szczerba and K. Prażmowski, eds.), Doktorce 1980, Filia Uniwersytetu Warszawskiego w Białymstoku (to appear).
  • 48. C. Smoryński, Commutativity and self-reference, Notre Dame J. Formal Logic (to appear).
  • 49. C. Smoryński, The finite inseparability of the first-order theory of diagonalisable algebras, Studia Logica (to appear).
  • 50. R. M. Solovay, Provability interpretations of modal logic, Israel J. Math. 25 (1976), 287-304.
  • 51. R. M. Solovay, On interpretability in set theories (to appear).
  • 52. S. Stefani, On the representation of hemimorphisms between boolean algebras, Boll. Un. Math. Ital. (5) 13-A (1976), 206-211.
  • 53. M. H. Stone, The theory of representations for boolean algebra, Trans. Amer. Math. Soc. 40 (1936), 37-111.
  • 54. V. Švejdar, A sentence that is difficult to interpret (to appear).
  • 55. A Ursini, Intuitionistic diagonalizable algebras, Algebra Universalis 9 (1979), 229-237.
  • 56. A Ursini, A modal calculus analogous to K4W, based on intuitionistic propositional logic. I, Studia Logica 38 (1979), 297-311.
  • 57. A. Visser, On the provability logic of any recursively enumerable extension of Peano arithmetic, or, another look at Solovay's proof (to appear).