Bulletin (New Series) of the American Mathematical Society

Syzygies of small rank

E.Graham Evans and Phillip Griffith

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.) Volume 4, Number 3 (1981), 329-330.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13C10: Projective and free modules and ideals [See also 19A13] 13C15: Dimension theory, depth, related rings (catenary, etc.) 13D05: Homological dimension
Secondary: 14F05: Sheaves, derived categories of sheaves and related constructions [See also 14H60, 14J60, 18F20, 32Lxx, 46M20] 14M07: Low codimension problems 14M10: Complete intersections [See also 13C40]


Evans, E.Graham; Griffith, Phillip. Syzygies of small rank. Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 3, 329--330.https://projecteuclid.org/euclid.bams/1183548120

Export citation


  • 1. M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. No. 94 (1969).
  • 2. W. Bruns, E. G. Evans and P. Griffith, Syzygies, ideals of height two and vector bundles, J. Algebra 67 (1980), 143-162.
  • 3. E. G. Evans and P. Griffith, The syzygy problem, Ann. of Math. (to appear).
  • 4. W. Gröbner, Algebraische Geometric. II. Allgemeine Theorie der Kommutativen Ringe und Körper, Bibliographisches Institut, Mannheim, 1970.
  • 5. R. Hartshorne, Algebraic vector bundles on projective spaces: A problem list, Topology 18 (1979), 117-128.
  • 6. M. Hochster, Topics in the homological theory of modules over commutative rings, CBMS Regional Conf. Ser. in Math., no. 24, Amer. Math. Soc., Providence, R. I., 1976.