Bulletin (New Series) of the American Mathematical Society

On the integral homology of finitely-presented groups

G. Baumslag, E. Dyer, and C. F. Miller

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.) Volume 4, Number 3 (1981), 321-324.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Baumslag, G.; Dyer, E.; Miller, C. F. On the integral homology of finitely-presented groups. Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 3, 321--324.https://projecteuclid.org/euclid.bams/1183548118

Export citation


  • 1. G. Baumslag, E. Dyer and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980), 1-47.
  • 2. R. Bieri, Mayer-Vietoris sequences for HNN-groups and homological duality, Math. Z. 143 (1975), 123-130.
  • 3. K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math., Vol. 143, Springer-Verlag, Berlin and New York, 1970.
  • 4. G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. Ser. A 262 (1961), 455-475.
  • 5. H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257-309.
  • 6. D. M. Kan and W. P. Thurston, Every connected space has the homology of a K (π, 1), Topology 15 (1976), 253-258.
  • 7. R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
  • 8. S. Mac Lane, Homology, Die Grundlehren der Math. Wissenschaften Bd. 114, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
  • 9. C. F. Miller, On group-theoretic decision problems and their classification, Ann. of Math. Studies, No. 68, Princeton Univ. Press, Princeton, N. J., 1971.
  • 10. J. R. Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541-543.