Bulletin (New Series) of the American Mathematical Society

Review: I. G. Macdonald, Symmetric functions and Hall polynomials

Richard P. Stanley

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 4, Number 2 (1981), 254-265.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183548016

Citation

Stanley, Richard P. Review: I. G. Macdonald, Symmetric functions and Hall polynomials . Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 254--265. https://projecteuclid.org/euclid.bams/1183548016.


Export citation

References

  • G. Andrews, Plane partitions. I: The MacMahon conjecture, Adv. in Math. Suppl. Studies 1 (1979), 131-150.
  • G. Andrews, Plane partitions. Ill: The weak Macdonald conjecture; Invent. Math. 53 (1979), 193-225.
  • G. Andrews, Totally symmetric plane partitions, Abstracts Amer. Math. Soc. 1 (1980), 415, # 779-10-23. 4.
  • P. H. Butler and B. G. Wybourne, Tables of outer S-function plethysms, Atomic Data 3 (1971), 133-151.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric function and allied tables, Cambridge Univ. Press, Cambridge, England, 1966.
  • P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103-161.
  • P. Doubilet, On the foundations of combinatorial theory. VII: Symmetric functions through the theory of distribution and occupancy, Studies in Appl. Math. 51 (1972), 377-396.
  • P. Doubilet, J. Fox, and G.-C. Rota, The elementary theory of the symmetric group, Proc. Young Day Conf. (T. V. Narayana, ed.), Dekker, New York, 1980.
  • E. B. Dynkin, Maximal subgroups of the classical groups, Amer. Math. Soc. Transi. (2) 6 (1957), 245-378.
  • H. O. Foulkes, Enumeration ofpermutations with prescribed up-down and inversion sequences, Discrete Math. 15 (1976), 235-252.
  • H. O. Foulkes, Tangent and secant numbers and representations of symmetric groups, Discrete Math. 15 (1976), 311-324.
  • E. R. Gansner, Matrix correspondences and the enumeration of plane partitions, thesis, Massachusetts Institute of Technology, 1978.
  • A. Garsia, Symmetric functions and the symmetric group, Lecture Notes, Univ. of Guelph, Ontario, Canada,1978.
  • A. M. Garsia and J. Remmel, On the raising operators of Alfred Young, Relations between Combinatorics and Other Parts of Mathematics (D. K. Ray-Chaudhuri, ed.), Proc. Sympos. Pure Math., vol. 34, Amer. Math. Soc., Providence, R. I., 1979, pp. 181-198.
  • J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.
  • P. Hall, A partition formula connected with Abelian groups, Comment. Math. Helv. 11 (1938/39), 126-129.
  • P. Hall, The algebra of partitions, Proc. 4th Canadian Math. Congr. (Banff, 1959), pp. 147-159.
  • D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709-727.
  • D. Knutson, rings and the representation theory of the symmetric group, Lecture Notes in Math., no. 308, Springer, Berlin-Heidelberg-New York, 1973.
  • C. Kostka, Vber den Zusammenhang zwischen einigen Formen von symmetrischen Funktionen, J. Reine Angew. Math. ( « Crelle's Journal) 93 (1882), 89-123.
  • C. Kostka, Tafeln und Formeln fur symmetrische Funktionen, Jahresb. d. deutschen Math.Verein. 16 (1907), 429-450.
  • A. Lascoux, Fonctions de Schur et grassmanniennes, C. R. Acad. Sci. Paris 281A (1975), 813-815,851-854. 23.
  • A. Lascoux, Calcul grassmannien, Thèse, Université de Paris VII, Paris, 1976.
  • A. Lascoux, Calcul de Schur et extensions grassmanniennes des anneaux, Combinatoire et Représentation du Groupe Symétrique (Strasbourg, 1976), (D. Foata, ed.), Lecture Notes in Math., no. 579, Springer, Berlin-Heidelberg-New York, 1977, pp. 182-216.
  • A. Lascoux, Classes de Chern d'un produit tensoriel, C. R. Acad. Sci. Paris 286A (1978), 385-387.
  • A. Lascoux and M. P. Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris 286A (1978), 323-324.
  • A. Lascoux and M. P. Schützenberger, Croissance des polynômes de Foulkes-Green, C. R. Acad. Sci. Paris 288A (1979), 95-98.
  • A. Lascoux and M. P. Schützenberger, Le monoïde plaxique, Non-commutative Structures in Algebra and Geometrie Combinatorics (A. de Luca, ed.), Quaderni délia Ricerca Scientifica del CNR (to appear).
  • D. E. Littlewood, The theory of group characters, 2nd ed., Oxford Univ. Press, 1950.
  • 30.1. G. Macdonald, Conjugacy classes of odd order in Coxeter groups (in preparation).
  • P. A. MacMahon, Combinatory analysis. I, II, Cambridge Univ. Press, 1915, 1916; reprinted by Chelsea, New York, 1960.
  • A. O. Morris, A survey on Hall-Littlewood functions and their applications to representation theory, Combinatoire et Représentation du Groupe Symétrique (Strasbourg, 1976), (D. Foata, ed.), Lecture Notes in Math., no. 579, Springer, Berlin-Heidelberg-New York, 1977, pp. 136-154.
  • J. Patera and R. T. Sharp, Generating functions for plethysms of finite and continuous groups, J. Phys. A: Math. Gen. 13 (1980), 397-416.
  • R. A. Proctor, Bruhat lattices, plane partition generating functions, and the Sperner property (in preparation).
  • R. A. Proctor, Solution of two difficult combinatorial problems with linear algebra (preprint).
  • 36.1. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. Inst. Hautes Études Sci. 18 (1963), 5-70.
  • M. Schützenberger, La correspondence de Robinson, Combinatoire et Représentation du Groupe Symétrique (Strasbourg, 1976), (D. Foata, ed.), Lecture Notes in Math., no. 579, Springer, Berlin-Heidelberg-New York, 1977, pp. 59-113.
  • C. S. Seshadri, Geometry of G/P – I (Standard monomial theory for a minuscule P), C. P. Ramanujan: A Tribute, Springer-Verlag, 1978, published for the Tata Institute of Fundamental Research, Bombay. 39.
  • R. P. Stanley, Theory and application of plane partitions. I, II, Studies in Appl. Math. 50 (1971), 167-188,259-279. 40.
  • R. P. Stanley, Some combinatorial aspects of the Schubert calculus, Combinatoire et Représentation du Groupe Symétrique (Strasbourg, 1976), (D. Foata, ed.), Lecture Notes in Math., no. 579, Springer, Berlin-Heidelberg-New York, 1977, pp.217-251.
  • R. P. Stanley, Unimodal sequences arising from Lie algebras, Combinatorics, Representation Theory and Statistical Methods in Groups (T. V. Narayana, R. M. Mathsen, and J. G. Williams, eds.), Dekker, New York, 1980, pp. 127-136.
  • R. P. Stanley, Some aspects of groups acting on finite posets (in preparation).
  • R. Steinberg, A geometric approach to the representation of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71 (1951), 274-282.
  • G. P. Thomas, Baxter algebras and Schur functions, thesis, Swansea, 1974.
  • B. G. Wybourne, Symmetry principles in atomic spectroscopy (appendix by P. H. Butler), Wiley, New York, 1970.
  • B. G. Wybourne, Classical groups for physicists, Wiley, New York, 1974.
  • A.-A. A. Yutsis, Tournaments and generalized Young tableaux, Math. Notes 27 (1980), 175-178.