Bulletin (New Series) of the American Mathematical Society

Scattering theory for automorphic functions

Peter D. Lax and Ralph S. Phillips

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 2, Number 2 (1980), 261-295.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183546232

Mathematical Reviews number (MathSciNet)
MR555264

Zentralblatt MATH identifier
0442.10018

Citation

Lax, Peter D.; Phillips, Ralph S. Scattering theory for automorphic functions. Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 2, 261--295. https://projecteuclid.org/euclid.bams/1183546232


Export citation

References

  • 1. L. D. Faddeev, Expansion in eigenfunctions of the Laplace operator in the fundamental domain of a discrete group on the Lobačevskiĭ plane, Trudy Moscov. Mat. Obšč. 17 (1967), 323-350; see also English transl., Trans. Moscow Math. Soc. 17 (1967), 357-386.
  • 2. L. D. Faddeev and B.S. Pavlov, Scattering theory and automorphic functions, Proc. Steklov Inst. Math. 27 (1972), 161-193.
  • 3. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
  • 4. T. Kubota, Elementary theory of Eisenstein series, Wiley, New York, 1973.
  • 5. P. D. Lax and R. S. Phillips, Scattering theory, Academic Press, New York, 1967.
  • 6. P. D. Lax and R. S. Phillips, Scattering theory for automorphic functions, Ann. of Math. Studies, no. 87, Princeton Univ. Press, Princeton, N. J., 1976.
  • 7. P. D. Lax and R. S. Phillips, The scattering of sound waves by an obstacle, Comm. Pure Appl. Math. 30 (1977), 195-233.
  • 8. P. D. Lax and R. S. Phillips, Translation representations for the solution of the non-Euclidean wave equation, Comm. Pure Appl. Math. 32 (1979), 617-667.
  • 9. H. P. McKean, Selberg's trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225-246.
  • 10. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
  • 11. M. A. Semenov-Tian-Shansky, Harmonic analysis on Riemannian symmetric spaces of negative curvature and scattering theory. Math. USSR Izvestija, vol. 10 (1976), 535-563.