Bulletin (New Series) of the American Mathematical Society

An analogue of the Mostow-Margulis rigidity theorems for ergodic actions of semisimple Lie groups

Robert J. Zimmer

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 2, Number 1 (1980), 168-170.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22D40: Ergodic theory on groups [See also 28Dxx] 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx] 28A65 57D30
Secondary: 46L10: General theory of von Neumann algebras


Zimmer, Robert J. An analogue of the Mostow-Margulis rigidity theorems for ergodic actions of semisimple Lie groups. Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 168--170. https://projecteuclid.org/euclid.bams/1183545205

Export citation


  • 1. A. Connes, J. Feldman and B. Weiss (to appear).
  • 2. H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 8 (1959), 119-159.
  • 3. G. W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187-207.
  • 4. G. A. Margulis, Non-uniform lattices in semisimple algebraic groups, Lie Groups and Their Representations, (ed. I. M. Gelfand), Wiley, New York.
  • 5. G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Amer. Math. Soc. Trans., vol. 109, 1977, pp. 33-45.
  • 6. G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, no. 78, Princeton Univ. Press, Princeton, N. J., 1973.
  • 7. D. Ornstein and B. Weiss (to appear).
  • 8. R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Anal. 27 (1978), 350-372.
  • 9. R. J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. École. Norm. Sup. 11 (1978), 407-428.
  • 10. R. J. Zimmer, Algebraic topology of ergodic Lie group actions and measurable foliations (preprint).