Bulletin (New Series) of the American Mathematical Society

Review: Jan R. Strooker, Introduction to categories, homological algebra and sheaf cohomology

J. Lambek

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 1, Number 6 (1979), 919-928.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183544904

Citation

Lambek, J. Review: Jan R. Strooker, Introduction to categories, homological algebra and sheaf cohomology. Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 919--928. https://projecteuclid.org/euclid.bams/1183544904


Export citation

References

  • 1. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956.
  • 2. S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294.
  • 3. S. Eilenberg and M. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952.
  • 4. P. Freyd, Abelian categories. Harper and Row, New York, 1964.
  • 5. P. Gabriel and N. Popescu, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C. R. Acad. Sci. Paris, Sér. A 258 (1964), 4188-4191.
  • 6. R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964.
  • 7. P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, Berlin and New York, 1971.
  • 8. D. M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294-329.
  • 9. J. Lambek, Goursat's theorem and homological algebra, Canad. Math. Bull. 7 (1964), 597-608.
  • 10. J. Lambek, Torsion theories, additive semantics and rings of quotients, Lecture Notes in Math., vol. 177, Springer-Verlag, Berlin and New York, 1971.
  • 11. J. Lambek and B. A. Rattray, A general Stone-Gelfand duality, Trans. Amer. Math. Soc. 248 (1979), 1-35.
  • 12. J. B. Leicht, Axiomatic proof of J. Lambek's homological theorem, Canad. Math. Bull. 7 (1964), 609-613.
  • 13. S. Mac Lane, Homology, Die Grundlehren der Mathematischen Wissenschaften, Band 114, Springer-Verlag, Berlin and New York, 1963.
  • 14. S. Mac Lane, Categories for the working mathematician, Springer-Verlag, Berlin and New York, 1971.
  • 15. B. Mitchell, Theory of categories, Academic Press, New York, 1965.
  • 16. N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London and New York, 1973.
  • 17. D. Puppe, Über die Axiome für abelsche Kategorien, Arch. Math. (Basel) 18 (1967), 217-222.
  • 18. N. Yoneda, On the homology of modules, J. Fac. Sci. Tokyo I 7 (1954), 193-227.