Bulletin (New Series) of the American Mathematical Society

Review: Max Karoubi, $K$-theory, an introduction

Robert E. Stong

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 1, Number 4 (1979), 658-661.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183544578

Citation

Stong, Robert E. Review: Max Karoubi, $K$ -theory, an introduction. Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 4, 658--661. https://projecteuclid.org/euclid.bams/1183544578


Export citation

References

  • 1. J. F. Adams, Vector fields on the sphere, Ann. of Math. (2) 75 (1962), 603-632.
  • 2. M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.
  • 3. M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc., Providence, R. I., 1961, pp. 7-38.
  • 4. M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, II, III, Ann. of Math. (2) 87 (1968), 484-530, 531-545 (with G. Segal), 546-604.
  • 5. H. Bass, Algebraic K-theory, Benjamin, New York, 1968.
  • 6. A. Borel and J. P. Serre, Le théorème de Riemann-Roch (d'après Grothendieck), Bull. Soc. Math. France 86 (1958), 97-136.
  • 7. L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C*-algebras, operators with compact self-commutators, and K-homology, Bull. Amer. Math. Soc. 79 (1973), 973-978.
  • 8. D. Husemoller, Fiber bundles, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, 1975.
  • 9. D. Quillen, Higher algebraic K-theory, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
  • 10. R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264-277.