Bulletin of the American Mathematical Society

Review: A. V. Balakrishnan, Applied functional analysis

Richard B. Holmes

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 84, Number 1 (1978), 65-71.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183540376

Citation

Holmes, Richard B. Review: A. V. Balakrishnan, Applied functional analysis. Bull. Amer. Math. Soc. 84 (1978), no. 1, 65--71. https://projecteuclid.org/euclid.bams/1183540376


Export citation

References

  • 1. D. Aldous, A characterization of Hilbert space using the central limit theorem, J. London Math. Soc. 14 (1976), 376-380.
  • 2. K. Aström, Introduction to stochastic control theory, Academic Press, New York, 1970.
  • 3. M. Athans, Towards a practical theory for distributed parameter Systems, IEEE Trans. Automatic Control, AC-15 (1970), 245-247.
  • 4. A. Balakrishnan, Introduction to optimization theory in a Hilbert space, Lecture Notes in Econ. and Math. Systems no. 42, Springer-Verlag, Berlin and New York, 1971.
  • 5. A. Bensoussan, Filtrage optimal des systèmes linéaires, Dunod, Paris, 1971.
  • 6. R. Brockett, Finite dimensional linear systems, Wiley, New York, 1970.
  • 7. M. Brodskiĭ, Triangular and Jordan representations of linear operators. Transl. Math. Monographs, no. 32, Amer. Math. Soc., Providence, R. I., 1972.
  • 8. R. Bucy and P. Joseph, Filtering for stochastic processes with applications to guidance, Wiley, New York, 1968.
  • 9. R. Curtain, A survey of infinite dimensional filtering, SIAM Review 17 (1975), 395-411.
  • 10. N. Dunford and J. Schwartz, Linear operators (Part II: Spectral theory), Interscience, New York, 1963.
  • 11. P. Falb, Infinite dimensional filtering, Information and Control 11 (1967), 102-137.
  • 12. W. Helton, Systems with infinite dimensional state space: The Hilbert space approach, Proc. IEEE 64 (1976), 145-159.
  • 13. A. Jazwinski, Stochastic processes and filtering theory, Academic Press, New York, 1970.
  • 14. T. Kailath, A view of three decades of linear filtering theory, IEEE Trans. Information Theory, IT-20 (1974), 145-181.
  • 15. J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269.
  • 16. K. Maurin, Methods of Hilbert spaces, Polish Scientific Publishers, Warsaw, 1967.
  • 17. T. McGarty, Stochastic systems and state estimation, Interscience, New York, 1974.
  • 18. C. Pearcy (Editor), Topics in operator theory, Math. Surveys, no. 13, Amer. Math. Soc., Providence, R. I., 1974.
  • 19. B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.