Bulletin of the American Mathematical Society

Internal set theory: A new approach to nonstandard analysis

Edward Nelson

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 83, Number 6 (1977), 1165-1198.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183539849

Mathematical Reviews number (MathSciNet)
MR0469763

Zentralblatt MATH identifier
0373.02040

Subjects
Primary: 02–02 02H20 0H25 02H10 26A06: One-variable calculus 26A98 60A05: Axioms; other general questions 60F15: Strong theorems

Citation

Nelson, Edward. Internal set theory: A new approach to nonstandard analysis. Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165--1198. https://projecteuclid.org/euclid.bams/1183539849


Export citation

References

  • 1. Paul J. Cohen, Set theory and the continuum hypothesis, Benjamin, New York, 1966. MR 38 #999.
  • 2. P. Erdös, Some remarks on set theory, Proc. Amer. Math. Soc. 1 (1950), 127-141.
  • 3. Charles N. Friedman, Perturbations of the Schrödinger equation by potentials with small support, semigroup product formulas, and applications to quantum mechanics, Ph. D. Dissertation, Princeton Univ., Princeton, N.J., 1971.
  • 4. Charles N. Friedman, Perturbations of the Schrödinger equation by potentials with small support, J. Functional Analysis 10 (1972), 346-360. MR 49 #5529.
  • 5. John Lamperti, Probability, Benjamin, New York, 1966. MR 34 #6812.
  • 6. Azriel Lévy, Axiom schemata of strong infinity in axiomatic set theory, Pacific J. Math. 10 (1960), 223-238. MR 23 #A1522.
  • 7. W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 18-86. MR 39 #6244.
  • 8. E. Mendelson, Introduction to mathematical logic, Van Nostrand, Princeton, N. J., 1964. MR 29 #2158.
  • 9. A. Nijenhuis, Strong derivatives and inverse mappings, Amer. Math. Monthly 81 (1974), 969-980. MR 50 #13405.
  • 10. Abraham Robinson, Non-standard analysis, 2nd ed., American Elsevier, New York, 1974. (1st ed., 1966. MR 34 #5680.)