Bulletin of the American Mathematical Society

General relativity and cosmology

R. K. Sachs and H. Wu

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 83, Number 6 (1977), 1101-1164.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183539848

Mathematical Reviews number (MathSciNet)
MR0503499

Zentralblatt MATH identifier
0376.53038

Subjects
Primary: 53C50: Lorentz manifolds, manifolds with indefinite metrics 53–02 83C99: None of the above, but in this section 83F05: Cosmology 83–02
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 53B30: Lorentz metrics, indefinite metrics 83C05: Einstein's equations (general structure, canonical formalism, Cauchy problems) 85–02 85A40: Cosmology {For relativistic cosmology, see 83F05}

Citation

Sachs, R. K.; Wu, H. General relativity and cosmology. Bull. Amer. Math. Soc. 83 (1977), no. 6, 1101--1164. https://projecteuclid.org/euclid.bams/1183539848


Export citation

References

  • 1. M. Alonso and E. J. Finn, Fundamental university physics. I, II, Addison-Wesley, New York, 1970.
  • 2. R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, New York and London, 1964. MR 29 #6401.
  • 3. R. L. Bishop and S. I. Goldberg, Tensor analysis on manifolds, MacMillan, New York, 1968. MR 36 #7057.
  • 4. C Dewitt and B. S. Dewitt (editors), Black holes, Gordon and Breach, New York, 1973.
  • 5. G. F. R. Ellis, Relativistic cosmology, General Relativity and Cosmology, Academic Press, New York, 1971. MR 49 #8567.
  • 6. A. E. Fischer and J. E. Marsden, Linearization stability of nonlinear partial differential equations, Proc. Sympos. Pure Math., vol. 27, part 2, Amer. Math. Soc., Providence, R. I., 1975, pp. 219-263.
  • 7. R. P. Geroch, Domain of dependence, J. Mathematical Phys. 11 (1970), 437-449, MR 49 #5585; erratum, 42, p. 1825.
  • 8. R. P. Geroch and E. H. Kronheimer and R. Penrose, Ideal points in space-time, Proc, Roy. Soc. London Ser. A. 327 (1972), 545-567. MR 47 #4583.
  • 9. S. Hawking and G. F. R. Ellis, The large scale structure of spacetime, Cambridge Univ. Press, London and New York, 1973.
  • 10. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York and London, 1962. MR 26 #2986.
  • 11. N. J, Hicks, Notes on differential geometry, Van Nostrand, Princeton, N. J., 1965. MR 31 #3936.
  • 12. S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, II, Interscience, New York and London, 1963, 1969. MR 27 #2945; 38 #6501.
  • 13. E. Merzbacher, Quantum mechanics, 2nd ed., Wiley, New York, 1970, MR 41 #4912.
  • 14. C. W, Misner, K. S. Thorne and J. A. Wheeler, Gravitation, Freeman, San Francisco, Calif., 1973.
  • 15. P. J. E. Peebles, Physical cosmology, Princeton Univ. Press, Princeton, N. J., 1971.
  • 16. R. Penrose, Techniques of differential topology in relativity, SIAM Publications, Philadelphia, 1972.
  • 17. R. K. Sachs, Cosmology, Relativity, Astrophysics and Cosmology, Reidel, Holland, 1973, pp. 197-236.
  • 18. R. K. Sachs and H. Wu, General relativity for mathematicians, Springer-Verlag, New York and Berlin, 1977.
  • 19. K. S. Thorne, The search for black holes, Scientific American, vol. 231, no. 6, Dec. 1974.
  • 20. S. Weinberg, Gravitation and cosmology, Wiley, New York, 1972.
  • 21. S. Weinberg, Unified theories of elementary particle interaction, Scientific American, vol. 231, no. 1, July 1974.