Bulletin of the American Mathematical Society

Review: A. H. Lightstone and A. Robinson, Non-archimedean fields and asymptotic expansions

Peter A. Loeb

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 83, Number 2 (1977), 231-235.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183538676

Citation

Loeb, Peter A. Review: A. H. Lightstone and A. Robinson, Non-archimedean fields and asymptotic expansions. Bull. Amer. Math. Soc. 83 (1977), no. 2, 231--235. https://projecteuclid.org/euclid.bams/1183538676


Export citation

References

  • 1. D. Laugwitz, Eine nichtarchimedische Erweiterung angeordneter Körper, Math. Nachr. 37 (1968), 225-236. MR 39 #4125.
  • 2. T. Levi-Civita, Sugli infiniti ed infinitesimali actuali quali elementi analytici, Opere Matematiche, Vol. 1. 1893-1900, Bologna, 1954, pp. 1-39. MR 16, 1.
  • 3. W. A. J. Luxemburg, Non-standard analysis. Lectures on A. Robinson's theory of infinitesimals and infinitely large numbers, Calif. Inst, of Technology, Pasadena, Calif., 1962 (mimeographed notes).
  • 4. A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1934), 269-404.
  • 5. J. Popken, Asymptotic expansions from an algebraic standpoint, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 131-143. MR 15, 27.
  • 6. Abraham Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966. MR 34 #5680.
  • 7. Abraham Robinson, Elementary embeddings of fields of power series, J. Number Theory 2 (1970), 237-247. MR 41 #3451.
  • 8. Abraham Robinson, On the real closure of a Hardy field, Theory of Sets and Topology (Hausdorff Memorial Volume, G. Asser et al., editors), VEB Deutsch. Verlag Wissensch., Berlin, 1972, pp. 427-433. MR 49 #4980.
  • 9. Abraham Robinson, Function theory on some nonarchimedean fields, Papers in the Foundations of Mathematics, Amer. Math. Monthly 80 (1973), 87-109. MR 48 #8464.