Bulletin of the American Mathematical Society

Generalized Steenrod homology theories

David A. Edwards and Harold M. Hastings

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 82, Number 2 (1976), 328-330.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537791

Mathematical Reviews number (MathSciNet)
MR0431138

Zentralblatt MATH identifier
0352.55006

Subjects
Primary: 46L05: General theory of $C^*$-algebras 47B30 55B15 55B20 55H25

Citation

Edwards, David A.; Hastings, Harold M. Generalized Steenrod homology theories. Bull. Amer. Math. Soc. 82 (1976), no. 2, 328--330. https://projecteuclid.org/euclid.bams/1183537791


Export citation

References

  • [B-D-F] L. Brown, R. Douglas and P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proc. Conf. on Operator Theory (Dalhousie Univ., Halifax, N. S., 1973), Lecture Notes in Math., vol. 345, Springer-Verlag, Berlin and New York, 1973, pp. 58-128.
  • [E-H] D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).
  • [Fr] E. M. Friedlander, Computations of K-theories of finite fields (to appear).
  • [Gro] A. Grothendieck, Technique de decente et théorèmes d'existence en géométrie algébrique. I. Séminaire Bourbaki 12e année 1959/60, Exposé 190, Secrétariat mathématique, Paris, 1960. MR 23 #A2273.
  • [K-S] J. Kaminker and C. Schochet, K-theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc. (to appear).
  • [Mil] J. Milnor, On the Steenrod homology theory, Berkely mimeo, 1961.
  • [Q] D. Quillen, Homotopical algebra, Lecture Notes in Math., vol. 43, Springer-Verlag, Berlin and New York, 1967. MR 36 #6480.
  • [St] N. E. Steenrod, Regular cycles on compact metric spaces, Ann. of Math (2) 41 (1940), 833-851. MR 2, 73.