Bulletin of the American Mathematical Society

A Weiner-like condition for quasilinear parabolic equations

Daniel Deignan

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 82, Number 2 (1976), 309-310.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537785

Mathematical Reviews number (MathSciNet)
MR0410098

Zentralblatt MATH identifier
0348.35053

Subjects
Primary: 35K20: Initial-boundary value problems for second-order parabolic equations 35K55: Nonlinear parabolic equations 35D10
Secondary: 31B15: Potentials and capacities, extremal length 31B35: Connections with differential equations

Citation

Deignan, Daniel. A Weiner-like condition for quasilinear parabolic equations. Bull. Amer. Math. Soc. 82 (1976), no. 2, 309--310. https://projecteuclid.org/euclid.bams/1183537785


Export citation

References

  • 1. D. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81-122. MR 39 #5952.
  • 2. Daniel J. Deignan, Boundary regularity of weak solutions to a quasilinear parabolic equation, Doctoral Dissertation, Indiana University, 1974.
  • 3. R. Gariepy and W. P. Ziemer, Behavior at the boundary of solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 56 (1974/75), 372-384. MR 50 #7807.
  • 4. O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, "Nauka", Moscow, 1967; English transl., Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968. MR 39 #3159a, b.
  • 5. N. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292. MR 43 #3474.
  • 6. J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134; Errata, Ibid. 20 (1967), 231-236. MR 28 #2357; 34 #3121.
  • 7. N. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205-226. MR 37 #1758.