Bulletin of the American Mathematical Society

Commutativity of intertwining operators. II

A. W. Knapp

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 82, Number 2 (1976), 271-273.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537772

Mathematical Reviews number (MathSciNet)
MR0407203

Zentralblatt MATH identifier
0333.22006

Subjects
Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}

Citation

Knapp, A. W. Commutativity of intertwining operators. II. Bull. Amer. Math. Soc. 82 (1976), no. 2, 271--273. https://projecteuclid.org/euclid.bams/1183537772


Export citation

References

  • 1. Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529-551. MR 41 #1933.
  • 2. Harish-Chandra, On the theory of the Eisenstein integral, Conference on Harmonic Analysis, Lecture Notes in Math., vol. 266, Springer-Verlag, Berlin and New York, 1972, pp. 123-149.
  • 3. A. W. Knapp, Determination of intertwining operators, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, pp. 263-268. MR 49 #3032.
  • 4. A. W. Knapp, Commutativity of intertwining operators, Bull. Amer. Math. Soc. 79 (1973), 1016-1018. MR 48 #11399.
  • 5. A. W. Knapp, Weyl group of a cuspidal parabolic, Ann. Sci. École Norm. Sup. 8 (1975), 275-294.
  • 6. A. W. Knapp and E. M. Stein, Singular integrals and the principal series. III, Proc. Nat. Acad. Sci. U. S. A. 71 (1974), 4622-4624.
  • 7. A. W. Knapp and E. M. Stein, Singular integrals and the principal series. IV, Proc. Nat. Acad. Sci. U. S. A. 72 (1975), 2459-2461.

See also

  • Part I: A. W. Knapp. Commutativity of intertwining operators. Bull. Amer. Math. Soc., Volume 79, Number 5 (1973), 1016--1018.