Bulletin of the American Mathematical Society

On the $\mu$-invariant of $Z$-homology 3-spheres

Joan S. Birman and R. Craggs

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 82, Number 2 (1976), 253-255.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537766

Mathematical Reviews number (MathSciNet)
MR0397734

Zentralblatt MATH identifier
0343.55001

Subjects
Primary: 55A40 57A10 57C20

Citation

Birman, Joan S.; Craggs, R. On the $\mu$-invariant of $Z$-homology 3-spheres. Bull. Amer. Math. Soc. 82 (1976), no. 2, 253--255. https://projecteuclid.org/euclid.bams/1183537766


Export citation

References

  • 1. Joan S. Birman, On the equivalence of Heegaard splittings of closed, orientable 3-manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N.J., pp. 137-164.
  • 2. S. Cappell and Julius Shaneson, Invariants of 3-manifolds, Bull. Amer. Math. Soc. 81 (1975), 559-562.
  • 3. R. Craggs, On Heegaard presentations and splitting homomorphisms (manuscript).
  • 4. R. Craggs, Relating representations for 3- and 4-manifolds (manuscript).
  • 5. J. Eells and N. H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. (4) 60 (1962), 93-110. MR 27 #6280.
  • 6. F. Gonzalez-Acuna, Dehn's construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58-79.
  • 7. C. McA. Gordon, Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151-172.
  • 8. V. A. Rohlin, New results in the theory of four-dimensional manifolds, Dokl. Akad. Nauk SSSR 84 (1952), 221-224. (Russian) MR 14, 573.