Bulletin of the American Mathematical Society
- Bull. Amer. Math. Soc.
- Volume 82, Number 1 (1976), 1-40.
Topology and logic as a source of algebra
Full-text: Open access
Article information
Source
Bull. Amer. Math. Soc., Volume 82, Number 1 (1976), 1-40.
Dates
First available in Project Euclid: 4 July 2007
Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537593
Mathematical Reviews number (MathSciNet)
MR0414648
Zentralblatt MATH identifier
0324.55001
Subjects
Primary: 18-02: Research exposition (monographs, survey articles) 12-02: Research exposition (monographs, survey articles) 55-02: Research exposition (monographs, survey articles) 02-02 00-xx
Citation
Mac Lane, Saunders. Topology and logic as a source of algebra. Bull. Amer. Math. Soc. 82 (1976), no. 1, 1--40. https://projecteuclid.org/euclid.bams/1183537593
References
- 1. Richard F. Arens, Operations induced in conjugate spaces, Proc. Internat. Congr. of Math. (Cambridge, Mass., 1950), vol. I, Amer. Math. Soc., Providence, R.I., 1952, pp. 532-533.
- 2. Richard F. Arens, The adjoint of a bilinear operator, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13, 659.Zentralblatt MATH: 0044.32601
Mathematical Reviews (MathSciNet): MR45941
Digital Object Identifier: doi:10.1090/S0002-9939-1951-0045941-1 - 3. Richard F. Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1-19. MR 13, 372.Zentralblatt MATH: 0042.35601
Mathematical Reviews (MathSciNet): MR44109
Digital Object Identifier: doi:10.1007/BF01300644 - 4. M. Artin, A. Grothendieck and J. L. Verdier, La théorie des topos et cohomologie étale des schémas (SGA 4), vols. I, II, III, (Séminaire de géométrie algébrique du Bois-Marie 1963/64), Lecture Notes in Math., vols. 269, 270, 305, Springer-Verlag, Berlin, Heidelberg and New York, 1972, 1973.Zentralblatt MATH: 0237.00012
- 5. R. Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), 375-416.
- 6. Michael Barr, Cohomology and obstructions: Commutative algebras, Seminar on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Lecture Notes in Math., vol. 80, Springer-Verlag, Berlin, Heidelberg and New York, 1969, pp. 357-373. MR 42 #6075.
- 7. H. Bass, Algebraic K-theory, Benjamin, New York and Amsterdam, 1968. MR 40 #2736.
- 8. N. Bourbaki, Éléments de mathématique. XL Part I: Les structures fondamentales de l'analyse. Livre II: Algèbre, Chap. 5: Corps commutatifs, Actualités Sci. Indust., no. 1102, Hermann, Paris, 1950. MR 12, 6.
- 9. H. Cartan, Séminaire Henri Cartan de l'École Normale Supérieure, 1954/1955, Algèbres d'Eilenberg-Mac Lane et homotopie, Secrétariat mathématique, Paris, 1955. MR 19, 438.Zentralblatt MATH: 0116.24401
- 10. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040.
- 11. E. Čech, Les groupes de Betti d'un complex infinie, Fund. Math. 25 (1935), 33-44.
- 12. G. J. Decker, The integral homology algebra of an Eilenberg-Mac Lane space, Thesis, Univ. of Chicago, Chicago, 1974.Mathematical Reviews (MathSciNet): MR2611718
- 13. J. Duskin, K(Π,n)-torsors and the interpretation of "triple" cohomology, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2554-2557. MR 49 #5139.Zentralblatt MATH: 0288.18013
Mathematical Reviews (MathSciNet): MR340384
Digital Object Identifier: doi:10.1073/pnas.71.6.2554 - 14. J. Duskin, Simplicial methods and the interpretation of "triple" cohomology, Mem. Amer. Math. Soc. No. 163 (to appear).
- 15. E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. MR 25 #4523.Zentralblatt MATH: 0119.18206
Mathematical Reviews (MathSciNet): MR141112
Digital Object Identifier: doi:10.2307/2372804 - 16. B. Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, Comment. Math. Helv. 18 (1946), 232-282. MR 8, 166.Zentralblatt MATH: 0061.40705
Mathematical Reviews (MathSciNet): MR17536
Digital Object Identifier: doi:10.1007/BF02568113 - 17. S. Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407-447. MR 6, 96.Zentralblatt MATH: 0061.40603
Mathematical Reviews (MathSciNet): MR10970
Digital Object Identifier: doi:10.2307/1969185 - 18. S. Eilenberg, Automata, languages, and machines. Vol. A, Academic Press, New York, 1974.
- 19. S. Eilenberg and G. M. Kelly, A generalization of the functorial calculus, J. Algebra 3 (1966), 366-375. MR 32 #7618.Zentralblatt MATH: 0146.02501
Mathematical Reviews (MathSciNet): MR190204
Digital Object Identifier: doi:10.1016/0021-8693(66)90006-8 - 20. S. Eilenberg and S. Mac Lane, Group extensions and homology, Ann. of Math. (2) 43 (1942), 757-831. MR 4, 88.Zentralblatt MATH: 0061.40602
- 21. S. Eilenberg and S. Mac Lane, Natural isomorphisms in group theory, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 537-543. MR 4, 134.Zentralblatt MATH: 0061.09203
Mathematical Reviews (MathSciNet): MR7421
Digital Object Identifier: doi:10.1073/pnas.28.12.537 - 22. S. Eilenberg and S. Mac Lane, Relations between homology and homotopy groups, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155-158. MR 4, 224.Zentralblatt MATH: 0061.40701
Mathematical Reviews (MathSciNet): MR7982
Digital Object Identifier: doi:10.1073/pnas.29.5.155 - 23. S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294. MR 7, 109.
- 24. S. Eilenberg and S. Mac Lane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480-509. MR 7, 137.Zentralblatt MATH: 0061.40702
Mathematical Reviews (MathSciNet): MR13312
Digital Object Identifier: doi:10.2307/1969165 - 25. S. Eilenberg and S. Mac Lane, Homology of spaces with operators. II, Trans. Amer. Math. Soc. 65 (1949), 49-99. MR 11, 379.Zentralblatt MATH: 0034.11101
- 26. S. Eilenberg and S. Mac Lane, Relations between homology and homotopy groups of spaces. II, Ann. of Math. (2) 51 (1950), 514-533. MR 11, 735.Zentralblatt MATH: 0036.12602
Mathematical Reviews (MathSciNet): MR35435
Digital Object Identifier: doi:10.2307/1969365 - 27. S. Eilenberg and S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199. MR 14, 670.Zentralblatt MATH: 0050.17205
- 28. S. Eilenberg and S. Mac Lane, On the groups H(Π,n). I, Ann. of Math. (2) 58 (1953), 55-106. MR 15, 54.Zentralblatt MATH: 0050.39304
Mathematical Reviews (MathSciNet): MR56295
Digital Object Identifier: doi:10.2307/1969820 - 29. S. Eilenberg and S. Mac Lane, On the groups H(Π,n). II. Methods of computation, Ann. of Math. (2) 60 (1954), 49-139. MR 16, 391.Zentralblatt MATH: 0055.41704
Mathematical Reviews (MathSciNet): MR65162
Digital Object Identifier: doi:10.2307/1969702 - 30. S. Eilenberg and S. Mac Lane, On the groups H(Π,n). III. Operations and obstructions, Ann. of Math. (2) 60 (1954), 513-557. MR 16, 392.Zentralblatt MATH: 0057.15302
Mathematical Reviews (MathSciNet): MR65162
Digital Object Identifier: doi:10.2307/1969702 - 31. S. Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math. (2) 51 (1950), 499-513. MR 11, 734.Zentralblatt MATH: 0036.12601
Mathematical Reviews (MathSciNet): MR35434
Digital Object Identifier: doi:10.2307/1969364 - 32. C. Elgot, Monadic computation and iterative algebraic theories, Proc. Logic Colloquium (Bristol, 1973) edited by H. E. Rose and J. C. Shepherdson, North-Holland Publishing Co., Amsterdam. Oxford 1975, pp. 175-230.
- 33. D. B. A. Epstein, Functors between tensored categories, Invent. Math. 1 (1966), 221-228. MR 35 #4276.Zentralblatt MATH: 0146.02502
Mathematical Reviews (MathSciNet): MR213412
Digital Object Identifier: doi:10.1007/BF01452242 - 33a. H. Freudenthal, Der Einfluss der Fundamentalgruppe auf die Bettischen Gruppen, Ann. of Math. (2) 47 (1946), 274-316. MR 8, 166.Zentralblatt MATH: 0061.40706
Mathematical Reviews (MathSciNet): MR17535
Digital Object Identifier: doi:10.2307/1969247 - 34. P. Freyd, Abelian categories. An introduction to the theory of functors, Harper's Ser. in Modern Math., Harper & Row, New York, 1964. MR 29 #3517.
- 35. P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.Zentralblatt MATH: 0252.18001
Mathematical Reviews (MathSciNet): MR396714
Digital Object Identifier: doi:10.1017/S0004972700044828 - 36. P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag, Berlin, Heidelberg and New York, 1967. MR 35 #1019.
- 37. G. Gentzen, Untersuchungen über das logische Schliessen. I, II, Math. Z. 39 (1934), 176-210, 405-431.
- 38. M. Gerstenhaber, On the deformation of rings and algebras. II, Ann. of Math. (2) 84 (1966), 1-19. MR 34 #7608.Zentralblatt MATH: 0147.28903
Mathematical Reviews (MathSciNet): MR207793
Digital Object Identifier: doi:10.2307/1970528 - 39. S. J. Goldberg, Extension of Lie algebras and the third cohomology group, Canad. J. Math. 5 (1953), 470-476. MR 15, 282.Zentralblatt MATH: 0051.02303
Mathematical Reviews (MathSciNet): MR57853
Digital Object Identifier: doi:10.4153/CJM-1953-054-8 - 40. M. Hakim, Topos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64, Springer-Verlag, Berlin and New York, 1972.
- 41. R. Hamsher, Eilenberg-Mac Lane algebras and their computation, Thesis, Univ. of Chicago, Chicago, Ill., 1973.
- 42. G. Hochschild, Cohomology classes of finite type and finite dimensional kernels for Lie algebras, Amer. J. Math. 76 (1954), 763-778. MR 16, 443.Zentralblatt MATH: 0057.27204
Mathematical Reviews (MathSciNet): MR65547
Digital Object Identifier: doi:10.2307/2372650 - 43. G. Hochschild, Lie algebra kernels and cohomology, Amer. J. Math. 76 (1954), 698-716. MR 16, 109.Zentralblatt MATH: 0055.26601
Mathematical Reviews (MathSciNet): MR63362
Digital Object Identifier: doi:10.2307/2372712 - 44. H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257-309. MR 3, 316.Zentralblatt MATH: 0027.09503
Mathematical Reviews (MathSciNet): MR6510
Digital Object Identifier: doi:10.1007/BF02565622 - 45. H. Hopf, Relations between the fundamental group and the second Betti group, Lectures in Topology, Univ. of Michigan Press, Ann Arbor, Mich., 1941, pp. 315-316. MR 3, 135.
- 46. H. Hopf, Nachtrag zu der Arbeit Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 15 (1943), 27-32. MR 4, 173.Zentralblatt MATH: 0027.09504
Mathematical Reviews (MathSciNet): MR7646
Digital Object Identifier: doi:10.1007/BF02565629 - 47. H. Hopf, Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören, Comment. Math. Helv. 17 (1945), 39-79, MR 6, 279.Zentralblatt MATH: 0061.40703
Mathematical Reviews (MathSciNet): MR12229
Digital Object Identifier: doi:10.1007/BF02566234 - 48. D. M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294-329. MR 24 #A1301.Zentralblatt MATH: 0090.38906
Mathematical Reviews (MathSciNet): MR131451
Digital Object Identifier: doi:10.1090/S0002-9947-1958-0131451-0 - 49. D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282-312. MR 22 #1897.Zentralblatt MATH: 0091.36901
Mathematical Reviews (MathSciNet): MR111032
Digital Object Identifier: doi:10.2307/1970006 - 50. G. M. Kelly, On Mac Lane's conditions for coherence of natural associativities, commutativities, etc., J. Algebra 1 (1964), 397-402. MR 32 #132.Zentralblatt MATH: 0246.18008
Mathematical Reviews (MathSciNet): MR182649
Digital Object Identifier: doi:10.1016/0021-8693(64)90018-3 - 51. G. M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971), no. 1, 97-140; erratum, ibid. no. 2, 219. MR 44 #278; 45 #1988.Zentralblatt MATH: 0215.09703
Mathematical Reviews (MathSciNet): MR283045
Digital Object Identifier: doi:10.1016/0022-4049(71)90013-2 - 52. G. M. Kelly and S. Mac Lane, Closed coherence for a natural transformation, Coherence in Categories, Lecture Notes in Math., vol. 281, Springer-Verlag, Berlin, Heidelberg and New York, 1972, pp. 1-28. MR 48 #8591.Zentralblatt MATH: 0245.18003
Mathematical Reviews (MathSciNet): MR374237
Digital Object Identifier: doi:10.1007/BFb0059554 - 53. A. Kock and G. C. Wraith, Elementary toposes, Lecture Notes Series, no. 30, Aarhus Universitet, Aarhus, Denmark, 1971.
- 54. J. Lambek, Deductive systems and categories. I. Syntactic calculus and residuated categories, Math. Systems Theory 2 (1968), 287-318. MR 38 #4277.Zentralblatt MATH: 0176.28901
Mathematical Reviews (MathSciNet): MR235979
Digital Object Identifier: doi:10.1007/BF01703261 - 55. J. Lambek, Deductive systems and categories. II. Standard constructions and closed categories, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conf., Seattle, Wash., 1968, Vol. One), Lecture Notes in Math., vol. 86, Springer-Verlag, Berlin, Heidelberg and New York, 1969, pp. 76-122. MR 39 #3967.
- 56. K. Lamotke, Semisimpliziale algebraische Topologie, Die Grundlehren der math. Wissenschaften, Band 147, Springer-Verlag, Berlin, Heidelberg and New York, 1968. MR 39 #6318.
- 57. F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872. MR 28 #2143.Zentralblatt MATH: 0119.25901
Mathematical Reviews (MathSciNet): MR158921
Digital Object Identifier: doi:10.1073/pnas.50.5.869 - 58. F. W. Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1506-1511. MR 30 #3025.Zentralblatt MATH: 0141.00603
Mathematical Reviews (MathSciNet): MR172807
Digital Object Identifier: doi:10.1073/pnas.52.6.1506 - 59. F. W. Lawvere. (editor), Toposes, algebraic geometry and logic, Lecture Notes in Math., vol. 274, Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 48 #8592.
- 60. S. Mac Lane, Some interpretations of abstract linear dependence in terms of projective geometry, Amer. J. Math. 58 (1936), 236-240.
- 61. S. Mac Lane, A lattice formulation for transcendence degrees and p-bases, Duke Math. J. 4 (1938), 455-468.Mathematical Reviews (MathSciNet): MR1546067
Digital Object Identifier: doi:10.1215/S0012-7094-38-00438-7
Project Euclid: euclid.dmj/1077490785 - 62. S. Mac Lane, The uniqueness of the power series representation of certain fields with valuations, Ann. of Math. 39 (1938), 370-382.
- 63. S. Mac Lane, Modular fields, I. Separating transcendence bases, Duke Math. J. 5 (1939), 372-393.Mathematical Reviews (MathSciNet): MR1546131
Digital Object Identifier: doi:10.1215/S0012-7094-39-00532-6
Project Euclid: euclid.dmj/1077491235 - 64. S. Mac Lane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23-45. MR 1, 3.Mathematical Reviews (MathSciNet): MR17
Digital Object Identifier: doi:10.1090/S0002-9947-1939-0000017-3 - 65. S. Mac Lane, Subfields and automorphism groups of p-adic fields, Ann. of Math. 40 (1939), 423-442.Zentralblatt MATH: 0021.00501
Mathematical Reviews (MathSciNet): MR1503470
Digital Object Identifier: doi:10.2307/1968931 - 66. S. Mac Lane, Note on the relative structure of p-adic fields, Ann. of Math. (2) 41 (1940), 751-753. MR 2, 123.Zentralblatt MATH: 0025.10404
Mathematical Reviews (MathSciNet): MR2860
Digital Object Identifier: doi:10.2307/1968854 - 67. S. Mac Lane, Modular fields, Amer. Math. Monthly 47 (1940), 259-274. MR 1, 328.
- 68. S. Mac Lane, Homology products in K(Π,n), Proc. Amer. Math. Soc. 5 (1954), 642-651. MR 16, 160.
- 69. S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316-345. MR 20 #5228.Zentralblatt MATH: 0081.03303
Mathematical Reviews (MathSciNet): MR98773
Project Euclid: euclid.ijm/1255454537 - 70. S. Mac Lane, Locally small categories and the foundations of set theory, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; PWN, Warsaw, 1961, pp. 25-43. MR 33 #168.
- 71. S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York: Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963; 3rd corrected printing, 1975. MR 28 #122.
- 72. S. Mac Lane, Some additional advances in algebra, Studies in Modern Algebra (A. A. Albert, editor), Studies in Math., vol. 2, The Math. Assoc, of Amer.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1963, pp. 35-58. MR 26 #3750.
- 73. S. Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28-46. MR 30 #1160.
- 74. S. Mac Lane, The influence of M. H. Stone on the origins of category theory, Functional Analysis and Related Fields (F. E. Browder, editor), Springer-Verlag, Berlin, Heidelberg and New York, 1970, pp. 228-241.
- 75. S. Mac Lane, The Milgram bar construction as a tensor product of functors, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Math., vol. 168, Springer-Verlag, Berlin, Heidelberg and New York, 1970; pp. 135-152. MR 42 #8495.
- 76. S. Mac Lane, Categories for the working mathematician, Springer-Verlag, Berlin, Heidelberg and New York, 1971.
- 77. S. Mac Lane, Sets, topoi, and internal logic in categories, Proc. Logic Colloquium (Bristol, 1973) edited by H. E. Rose and J. C. Shepherdson, North-Holland Publishing Co., Amsterdam. Oxford 1975, pp. 119-134.
- 78. S. Mac Lane and O. F. G. Schilling, Normal algebraic number fields, Trans. Amer. Math. Soc. 50 (1941), 295-384. MR 3, 102.Mathematical Reviews (MathSciNet): MR5108
Digital Object Identifier: doi:10.1090/S0002-9947-1941-0005108-8 - 79. S. Mac Lane and F. K. Schmidt, The generation of inseparable fields, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 583-587. MR 3, 263.Zentralblatt MATH: 0063.06800
Mathematical Reviews (MathSciNet): MR6153
Digital Object Identifier: doi:10.1073/pnas.27.12.583 - 80. E. Manes, Algebraic theories, Graduate Texts in Math., Springer-Verlag, Berlin, Heidelberg and New York (to appear).
- 81. J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N.J., 1967. MR 36 #5942.
- 82. R. J. Milgram, The bar construction and abelian H-spaces, Illinois J. Math. 11 (1967), 242-250. MR 34 #8404.Zentralblatt MATH: 0152.40502
Mathematical Reviews (MathSciNet): MR208595
Project Euclid: euclid.ijm/1256054662 - 83. M. Mori, On the three-dimensional cohomology group of Lie algebras, J. Math. Soc. Japan 5 (1953), 171-183. MR 15, 282.Zentralblatt MATH: 0051.02304
Mathematical Reviews (MathSciNet): MR57854
Digital Object Identifier: doi:10.2969/jmsj/00520171
Project Euclid: euclid.jmsj/1261415546 - 84. D. G. Quillen, Homotopical algebra, Lecture Notes in Math, vol 43, Springer-Verlag, Berlin, Heidelberg and New York, 1967. MR 36 #6480.
- 85. D. G. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586. MR 47 #3565.Zentralblatt MATH: 0249.18022
Mathematical Reviews (MathSciNet): MR315016
Digital Object Identifier: doi:10.2307/1970825 - 86. N. Saavedra Rivano, Catégories tannakiennes, Lecture Notes in Math., vol. 265, Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 49 #2769.
- 87. M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Bull. Amer. Math. Soc. 71 (1965), 872-875. MR 34 #8405.Zentralblatt MATH: 0132.19201
Mathematical Reviews (MathSciNet): MR208596
Digital Object Identifier: doi:10.1090/S0002-9904-1965-11420-3
Project Euclid: euclid.bams/1183527356 - 88. J.-P. Serre, Cohomologie galoisienne, Cours au Collège de France, 1962-1963, 2nd. ed., Lectures Notes in Math., vol. 5, Springer-Verlag, Berlin, Heidelberg and New York, 1964. MR 31 #4785.
- 89. U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup. (3) 78 (1961), 163-209. MR 24 #A2605.
- 90. J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292. MR 28 #1623.
- 91. N. E. Steenrod, Milgram's classifying space of a topological group, Topology 7 (1968), 349-368. MR 38 # 1675.Zentralblatt MATH: 0177.51601
Mathematical Reviews (MathSciNet): MR233353
Digital Object Identifier: doi:10.1016/0040-9383(68)90012-8 - 92. D. P. Sullivan, Geometric topology, part 1, Localization, periodicity, and Galois symmetry, Mimeographed notes, M.I.T., Cambridge, Mass., 1970.Zentralblatt MATH: 1078.55001
- 93. J. Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math (2) 56 (1952), 294-297. MR 14, 252.Zentralblatt MATH: 0047.03703
Mathematical Reviews (MathSciNet): MR49950
Digital Object Identifier: doi:10.2307/1969801 - 94. O. Teichmüller, p-Algebren, Deutsche Math. 1 (1936), 362-388.
- 95. O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper, J. Reine Angew Math. 176 (1936), 141-152.
- 96. O. Teichmüller, Über die sogenannte nichtkommutative Galoissche Theorie und die Relation $\xi\sb {łambda,µ,\nu}\xi\sb {łambda,µ\nu,\pi}\xi\sp {łambda}\sb {µ,\nu,\pi}=\xi\sb {łambda,µ,\nu \pi}\xi\sb {łambda,µ,\nu,\pi}$, Deutsche Math. 5 (1940), 138-149. MR 2, 122.Mathematical Reviews (MathSciNet): MR2858
- 97. O. Veblen, Analysis situs, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 5, part II, Amer. Math. Soc., Providence, R. I., 1931.
- 98. R. Voreadou, A coherence theorem for closed categories (to appear).Mathematical Reviews (MathSciNet): MR622637
- 99. R. Voreadou, Non-commutative diagrams in closed categories (to appear).
- 100. A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ., vol. 29, Amer. Math. Soc., Providence, R. I., 1946. MR 9, 303.
- 101. J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110. MR 12, 43.Zentralblatt MATH: 0037.26101
Mathematical Reviews (MathSciNet): MR35997
Digital Object Identifier: doi:10.2307/1969511 - 102. H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935), 509-533.
- 103. H. Whitney, The maps of an n-complex into an n-sphere, Duke Math. J. 3 (1937), 51-55.Mathematical Reviews (MathSciNet): MR1545972
Digital Object Identifier: doi:10.1215/S0012-7094-37-00306-5
Project Euclid: euclid.dmj/1077489917 - 104. H. Whitney, Tensor products of abelian groups, Duke Math. J. 4 (1938), 495-528.Mathematical Reviews (MathSciNet): MR1546071
Digital Object Identifier: doi:10.1215/S0012-7094-38-00442-9
Project Euclid: euclid.dmj/1077490789
American Mathematical Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Topological Structure of Diagonalizable Algebras and Corresponding Logical Properties of Theories
D'Agostino, Giovanna, Notre Dame Journal of Formal Logic, 1994 - The algebra of logic
Louis Couturat, The algebra of logic (Chicago and London: The Open court publishing company, 1914), 1914 - The algebra of logic
Couturat, Louis, The algebra of logic, 1914
- Topological Structure of Diagonalizable Algebras and Corresponding Logical Properties of Theories
D'Agostino, Giovanna, Notre Dame Journal of Formal Logic, 1994 - The algebra of logic
Louis Couturat, The algebra of logic (Chicago and London: The Open court publishing company, 1914), 1914 - The algebra of logic
Couturat, Louis, The algebra of logic, 1914 - On the logic of continuous algebras.
Adámek, Jiří, Mekler, Alan H., Nelson, Evelyn, and Reiterman, Jan, Notre Dame Journal of Formal Logic, 1988 - Algebraic logic with generalized quantifiers.
Pinter, Charles C., Notre Dame Journal of Formal Logic, 1975 - On an algebra of lattice-valued logic
Hansen, Lars, Journal of Symbolic Logic, 2005 - Complete Representations in Algebraic Logic
Hirsch, Robin and Hodkinson, Ian, Journal of Symbolic Logic, 1997 - The Boolean algebra of logic
Hanf, William, Bulletin of the American Mathematical Society, 1975 - Algebraic Logic Conference
Andreka, H., Ferenczi, M., Nemeti, I., and Sereny, Gy., Journal of Symbolic Logic, 1989 - Homeomorphism and the Equivalence of Logical Systems
Pollard, Stephen, Notre Dame Journal of Formal Logic, 1998
