Bulletin of the American Mathematical Society

A lower estimate for exponential sums

C. A. Berenstein and M. A. Dostal

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 4 (1974), 687-691.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535699

Mathematical Reviews number (MathSciNet)
MR0344884

Zentralblatt MATH identifier
0304.33001

Subjects
Primary: 33A10 32A15: Entire functions 47G05

Citation

Berenstein, C. A.; Dostal, M. A. A lower estimate for exponential sums. Bull. Amer. Math. Soc. 80 (1974), no. 4, 687--691. https://projecteuclid.org/euclid.bams/1183535699


Export citation

References

  • 1. V. Avanissian, Oral communication, 1970.
  • 2. C. A. Berenstein and M. A. Dostal, Analytically uniform spaces and their applications to convolution equations, Lecture Notes in Math., vol. 256, Springer-Verlag, Berlin and New York, 1972.
  • 3. C. A. Berenstein and M. A. Dostal, Some remarks on convolution equations, Ann. Inst. Fourier 23 (1973), 55-74.
  • 4. C. A. Berenstein and M. A. Dostal, On convolution equations. I, L'Analyse Harmonique dans le Domaine Complexe, Lecture Notes in Math., vol. 336, Springer-Verlag, Berlin and New York, 1973, pp. 79-94.
  • 5. C. A. Berenstein and M. A. Dostal, On convolution equations. II, Proc. Colloq. Anal. Rio de Janeiro, 1972 (to appear).
  • 6. M. A. Dostal, An analogue of a theorem of Vladimir Bernstein and its applications to singular supports of distributions, Proc. London Math. Soc. (3) 19 (1969), 553-576. MR 40 #3302.
  • 7. L. Hörmander, On the range of convolution operators, Ann. of Math. (2) 76 (1962), 148-170. MR 25 #5379.
  • 8. L. Hörmander, Supports and singular supports of convolutions, Acta Math. 110 (1963), 279-302. MR 27 #4070.
  • 9. F. John, Bestimmung einer Funktion aus ihren Integralen über gewisse Mannigfaltigkeiten, Math. Ann. 109 (1934), 488-520.
  • 10. W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. MR 27 #5086.
  • 11. W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. Amer. Math. Soc. 123 (1966), 449-459. MR 33 #6110.
  • 12. J. F. Ritt, On the zeros of exponential polynomials, Trans. Amer. Math. Soc. 31 (1929), 680-686.
  • 13. A. Shields, On quotients of exponential polynomials, Comm. Pure Appl. Math. 16 (1963), 27-31. MR 26 #6411.