Bulletin of the American Mathematical Society

The method of extremal length

Burton Rodin

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 4 (1974), 587-606.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535685

Mathematical Reviews number (MathSciNet)
MR0361048

Zentralblatt MATH identifier
0286.30014

Subjects
Primary: 30A40
Secondary: 30A52 30A30

Citation

Rodin, Burton. The method of extremal length. Bull. Amer. Math. Soc. 80 (1974), no. 4, 587--606. https://projecteuclid.org/euclid.bams/1183535685


Export citation

References

  • Accola, R. D. M. [1] Differentials and extremal length on Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 540-543. MR 22 #9598.
  • Adams, D. R. [1] (with Meyers, N. G.) Thinness and Weiner criteria for non-linear potentials, Indiana Univ. Math. J. 22 (1972), 169-197.
  • Adams, D. R. [2] The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529-533.
  • Ahlfors, L. V. [1] Untersuchungen zur Theorie der konformen abbildungen und der ganzen Funktionen, Acta Soc. Sci. Fenn. Ser. A I, No. 9 (1930), 40 pp.
  • Ahlfors, L. V. [2] (with Beurling, A.) Invariants conformes et problèmes extrémaux, C. R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 341-351. MR 9, 23.
  • Ahlfors, L. V. [3] (with Beurling, A.) Conformal invariants. Construction and applications of conformal maps, Appl. Math. Ser., no. 18, Nat. Bureau of Standards, U.S. Government Printing Office, Washington, D.C., 1952. MR 14, 861.
  • Ahlfors, L. V. [4] (with Beurling, A.) Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101-129. MR 12, 171.
  • Ahlfors, L. V. [5] (with Sario, L.) Riemann surfaces, Princeton Math. Ser., no. 26, Princeton Univ. Press, Princeton, N.J., 1960. MR 22 #5729.
  • Ahlfors, L. V. [6] Classical and contemporary analysis, SIAM Rev. 3 (1961), 1-9. MR23 #A291.
  • Ahlfors, L. V. [7] Geodesic curvature and area, Studies in Math. Anal. and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 1-7. MR 26 #2598.
  • Ahlfors, L. V. [8] Lectures on quasiconformal mappings, Van Nostrand Math. Studies, no. 10, Van Nostrand, Princeton, N.J., 1966. MR 34 #336.
  • Ahlfors, L. V. [9] Conformal invariants: Topics in geometric function theory, McGraw-Hill, New York, 1973.
  • Akaza, T. [1] (with Oikawa, K.) Examples of weak boundary components, Nagoya Math. J. 18 (1961), 165-170. MR 24 #A1387.
  • Besicovitch, A. S. [1] On two problems of Loewner, J. London Math. Soc. 27 (1952), 141-144. MR 13, 831.
  • Beurling, A. [1-3] Cf. Ahlfors, L. V.; Beurling, A. [2-4]
  • Blatter, C. [1] Über Extremallängen auf geschlossen Flächen, Comment. Math. Helv. 35 (1961), 153-168. MR 24 #A1389.
  • Blatter, C. [2] Zur Riemannschen Geometrie in Grossen auf dem Möbiusband, Compositio Math. 15 (1961), 88-107. MR 25 #3484.
  • Brelot, M. [1] On topologies and boundaries in potential theory, Lecture Notes in Math., vol. 175, Springer-Verlag, Berlin and New York, 1971. MR 43 #7654.
  • Chern, S. S. [1] (with Levine, H. I.; Nirenberg, L.) Intrinsic norms on a complex manifold, Global Analysis (Papers in Honor of K. Kodaira), Univ. of Tokyo Press, Tokyo, 1969, pp. 119-139. MR 40 #8084.
  • Choquet, G. [1] Forme abstraite du théorème de capacitabilité, Ann. Inst. Fourier (Grenoble) 9 (1959), 83-89. MR 22 #3692b.
  • Constantinescu, C. and Cornea, A. [1] Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 32, Springer-Verlag, Berlin, 1963. MR 28 #3151.
  • Doob, J. L. [1] Boundary properties of functions with finite Dirichlet integrals, Ann. Inst. Fourier (Grenoble) 12 (1962), 573-621. MR 30 #3992.
  • Fuchs, W. H. J. [1] Topics in the theory of functions of one complex variable, Van Nostrand Math. Studies, no. 12, Van Nostrand, Princeton, N.J., 1967. MR 36 #3954.
  • Fuglede, B. [1] Extremal length and functional completion, Acta Math. 98 (1957), 171-219. MR 20 #4187.
  • Gaier, D. [1] Estimates of conformal mappings near the boundary, Indiana Univ. Math. J. 21 (1971/72), 581-595. MR 45 #2151.
  • Gal, I. S. [1] Conformally invariant metrics on Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1629-1633. MR 22 #3810.
  • Gal, I. S. [2] Conformally invariant metrics and uniform structures. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 63=Indag. Math. 22 (1960), 218-231, 232-244. MR 22 #9597.
  • Gehring, F. W. [1] (with Väisälä, J.) On the geometric definition for quasi-conformal mappings, Comment. Math. Helv. 36 (1961), 19-32. MR 25 #4099.
  • Gehring, F. W. [2] Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519. MR 24 #A2677.
  • Gehring, F. W. [3] Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137-150. MR 25 #4098.
  • Gehring, F. W. [4] Quasiconformal mappings in space, Bull. Amer. Math. Soc. 69 (1963), 146-164. MR 26 #2606.
  • Gehring, F. W. [5] (with Väisälä, J.) The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1-70. MR 31 #4905.
  • Gehring, F. W. [6] Definitions for a class of plane quasiconformal mappings, Nagoya Math. J. 29 (1967), 175-184. MR 35 #4410.
  • Gehring, F. W. [7] Inequalities for condensers, hyperbolic capacity, and extremal lengths, Michigan Math. J. 18 (1971), 1-20. MR 44 #2915.
  • Grötzsch, H. [1-11] Eleven papers in Ber. Verh. Sächs. Akad. Wiss. Leipzig Math. Phys. (1928-1932).
  • Grötzsch, H. [12] Über zwei Verschiebungsprobleme der konformen Abbildung, Sitzgsber. Preuss. Akad. Wiss. Phys.-Math. 1933, 87-100.
  • Grötzsch, H. [13-15] Über die Geometrie der schlichten konformen Abbildung. I, II, III, Sitzgsber. Preuss. Akad. Wiss. Phys.-Math. 1933, 654-671, 893-908; ibid. 1934, 434-444.
  • Gol'dberg, A. A. [1] (with Stročik, T. V.) Conformal mapping of symmetric half-strips and angular regions, Litovsk. Mat. Sb. 6 (1966), 227-239. (Russian) MR 35 #5593.
  • Havin, V. P. [1] Cf. Maz'ja, V. G.; Havin, V. P. [1]
  • Hersch, J. [1] (with Pfluger, A.) Principe de l'augmentation des longueurs extrémales, C. R. Acad. Sci. Paris 237 (1953), 1205-1207. MR 15, 301.
  • Hersch, J. [2] Longueurs extrémales et géométrie globale, Ann. Sci. École Norm. Sup. (3) 72 (1955), 401-414. MR 18, 146.
  • Hersch, J. [3] Longueurs extrémales et théorie des fonctions, Comment. Math. Helv. 29 (1955), 301-337. MR 17, 835.
  • Jenkins, J. A. [1] Some problems in conformal mapping, Trans. Amer. Math. Soc. 67 (1949), 327-350. MR U, 341.
  • Jenkins, J. A. [2] Some results related to extremal length, Contributions to the Theory of Riemann Surfaces, Ann. of Math. Studies, no. 30, Princeton Univ. Press, Princeton, N.J., 1953, pp. 87-94. MR 15, 115.
  • Jenkins, J. A. [3] On the existence of certain general extremal metrics, Ann. of Math. (2) 66 (1957), 440-453. MR 19, 845.
  • Jenkins, J. A. [4] Univalent functions and conformal mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Heft 18, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin, 1958. MR 20 #3288.
  • Jenkins, J. A. [5] (with Oikawa, K.) On the growth of slowly increasing unbounded harmonic functions, Acta Math. 124 (1970), 37-63. MR 41 #3789.
  • Jenkins, J. A. [6] (with Oikawa, K.) On results of Ahlfors and Hayman, Illinois J. Math. 15 (1971), 664-671. MR 45 #5332.
  • Jurchescu, M. [1] Modulus of a boundary component, Pacific J. Math. 8 (1958), 791-804. MR 21 #2047.
  • Klein, Felix [1] On Riemann's theory of algebraic functions and their integrals. A supplement to the usual treatises, Dover, New York, 1963. MR 28 #1295.
  • Keen, L. [1] An extremal length on a torus, J. Analyse Math. 19 (1967), 203-206. MR 35 #7269.
  • Kusunoki, Y. [1] (with Mori, S.) Some remarks on boundary values of harmonic functions with finite Dirichlet integrals, J. Math. Kyoto Univ. 7 (1967), 315-324. MR 37 #1589.
  • Kusunoki, Y. [2] On some boundary properties of harmonic Dirichlet functions, Proc. Japan Acad. 46 (1970), 277-282. MR 45 #3695.
  • Lehto, O. [1] (with Virtanen, K. I.) Quasikonforme Abbildungen, Die Grundlehren der math. Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 126, Springer-Verlag, Berlin and New York, 1965. MR 32 #5872.
  • Levine, H. I. [1] Cf. Chern, S. S.; Levine, H. I.; Nirenberg, L. [1]
  • Lions, J. L. [1] (with Magenes, E.) Non-homogeneous boundary value problems and applications, Springer-Verlag, Berlin and New York, 1972.
  • Magenes, E. [1] Cf. Lions, J. L.; Magenes, E. [1]
  • Marden, A. [1] The weakly reproducing differentials on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I No. 359 (1965), 32 pp. MR 32 #5868.
  • Marden, A. [2] (with Rodin, B.) A complete extremal distance problem on open Riemann surfaces, Bull. Amer. Math. Soc. 72 (1966), 326-328. MR 35 #3056.
  • Marden, A. [3] (with Rodin, B.) Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966), 237-269. MR 34 #2862.
  • Marden, A. [4] (with Rodin, B.) Periods of differentials on open Riemann surfaces, Duke Math. J. 33 (1966), 103-108. MR 33 #4260.
  • Maz'ja, V. G. [1] (with Havin, V. P.) A nonlinear analogue of the Newtonian potential and metric properties of the (p, 1)-capacity, Dokl. Akad. Nauk SSSR 194 (1970), 770-773 = Soviet Math. Dokl. 11 (1970), 1294-1298. MR 42 #7926.
  • Meyers, N. G. [1] Cf. Adams, D. R.; Meyers, N. G. [1]
  • Minda, C. D. [1] Extremal length and harmonic functions on Riemann surfaces, Trans. Amer. Math. Soc. 171 (1972), 1-22.
  • Minda, C. D. [2] Extremal length and reproducing differentials on Riemann surfaces (to appear).
  • Mizumoto, H. [1] Theory of Abelian differentials and relative extremal length with applications to extremal slit mappings, Japan. J. Math. 37 (1968), 1-58. MR 39 #7090.
  • Mizumoto, H. [2] Periods of differentials and relative extremal length. I, II, Kōdai Math. Sem. Rep. 21 (1969), 205-222, 399-404. MR 40 #340; 41 #7095.
  • Mori, S. [1] Cf. Kusunoki, Y.; Mori, S. [1]
  • Nakai, M. [1] Cf. Sario, L.; Nakai, M. [7]
  • Nevanlinna, R. [1]Polygonal representation of Riemann surfaces, Lectures on Functions of a Complex Variable, Univ. of Michigan Press, Ann. Arbor, Mich., 1955, pp. 65-70. MR 16, 1097.
  • Nirenberg, L. [1] Cf. Chern, S. S.; Levine, H. L; Nirenberg, L.
  • Obrock, A. E. [1] On bounded oscillation and asymptotic expansion of conformal strip mappings, Trans. Amer. Math. Soc. 173 (1972), 183-201.
  • Ohtsuka, M. [1] Dirichlet problems on Riemann surfaces and conformal mappings, Nagoya Math. J. 3 (1951), 91-137. MR 13, 642.
  • Ohtsuka, M. [2] Sur un théorème étoile de Gross, Nagoya Math. J. 9 (1955), 191-207. MR 17, 1191.
  • Ohtsuka, M. [3] Extremal length of families of parallel segments, J. Sci. Hiroshima Univ. Ser. A I Math. 28 (1964), 39-51. MR 29 #3666.
  • Ohtsuka, M. [4] Extremal length of level surfaces and orthogonal trajectories, J. Sci. Hiroshima Univ. Ser. A I Math. 28 (1964), 259-270. MR 31 #1389.
  • Ohtsuka, M. [5] On limits of BLD functions along curves, J. Sci. Hiroshima Univ. Ser. A I Math. 28 (1964), 67-70. MR 29 #6012.
  • Ohtsuka, M. [6] On weak and unstable components, J. Sci. Hiroshima Univ. Ser. A I Math. 28 (1964), 53-58. MR 29 #3667.
  • Ohtsuka, M. [7] A computation of extremal length in an abstract space, J. Sci. Hiroshima Univ. Ser. A I Math. 29 (1965), 87-96. MR 32 #5841.
  • Ohtsuka, M. [8] Dirichlet principle on Riemann surfaces, J. Analyse Math. 19 (1967), 295-311. MR 36 #1638.
  • Ohtsuka, M. [9] Dirichlet problem, extremal length, and prime ends, Van Nostrand Reinhold, New York, 1970.
  • Ohtsuka, M. [10] Extremal length and precise functions in 3-space (to appear).
  • Oikawa, K. [1] On a criterion for the weakness of an ideal boundary component, Pacific J. Math. 9 (1959), 1233-1238. MR 22 #100.
  • Oikawa, K.[2] On the stability of boundary components, Pacific J. Math. 10 (1960), 263-294. MR 27 #1590.
  • Oikawa, K.[3] Cf. Akasa, T.; Oikawa, K. [1]
  • Oikawa, K.[4] Welding of polygons and the type of Riemann surfaces, Kōdai Math. Sem. Rep. 13 (1961), 37-52. MR 23 #A3253.
  • Oikawa, K.[5] A remark to the construction of Riemann surfaces by welding, J. Sci. Hiroshima Univ. Ser. A I Math. 27 (1963), 213-216. MR 29 #241.
  • Oikawa, K.[6] (with Suita, N.) On parallel slit mappings, Kōdai Math. Sem. Rep. 16 (1964), 249-254. MR 30 #1237.
  • Oikawa, K.[7] Remarks to Conformal mappings onto radially slit disks, Sci. Papers College Gen. Ed. Univ. Tokyo 15 (1965), 99-109. MR 33 #1438.
  • Oikawa, K.[8] Cf. Tamura, J.; Oikawa, K.; Yamazaki, K. [1]
  • Oikawa, K.[9] Cf. Sario, L.; Oikawa, K. [6]
  • Oikawa, K.[10] (with Suita, N.) On conformal mappings into incised radial slit disks, Kōdai Math. Sem. Rep. 22 (1970), 45-52. MR 44 #1798.
  • Oikawa, K.[11] Cf. Jenkins, J. A.; Oikawa, K. [5]
  • Oikawa, K.[12] Cf. Jenkins, J. A.; Oikawa, K. [6]
  • Ozawa, M. [1] Classification of Riemann surfaces, Kōdai Math. Sem. Rep. 1952, 63-76. MR 14, 462.
  • Pfluger, A. [1] Cf. Hersch, J.; Pfluger, A. [1]
  • Pfluger, A. [2] Extremallängen und Kapazität, Comment. Math. Helv. 29 (1955), 120-131. MR 16, 810.
  • Pfluger, A. [3] Theorie der Riemannschen Flächen, Springer-Verlag, Berlin, 1957. MR 18, 796.
  • Pu, P. M. [1] Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55-71. MR 14, 87.
  • Rengel, E. [1] Über einige Schlitz-Theoreme der konformen abbildung, Schr. Math. Sem. Inst. Angew. Math. Univ. Berlin 1 (1933), 141-162.
  • Renggli, H. [1] Quasiconformal mappings and extremal lengths, Amer. J. Math. 86 (1964), 63-69. MR 30 #1244.
  • Rodin, B. [1] Extremal length of weak homology classes on Riemann surfaces, Proc. Amer. Math. Soc. 15 (1964), 369-372. MR 29 #240.
  • Rodin, B. [2-3] Cf. Marden, A.; Rodin, B. [2-3]
  • Rodin, B. [4] Extremal length and removable boundaries of Riemann surfaces, Bull. Amer. Math. Soc. 72 (1966), 274-276. MR 32 #4265.
  • Rodin, B. [5] Cf. Marden, A.; Rodin, B. [4]
  • Rodin, B. [6] (with Sario, L.) Principal functions, Van Nostrand, Princeton, N.J., 1968. MR 37 #5378.
  • Rodin, B. [7] Extremal length and geometric inequalities, Proc. Sympos. Pure Math., vol. 11, Amer. Math. Soc. Providence, R.I., 1968, pp. 370-376. MR 38 #6052.
  • Royden, H. L. [1] Open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I No. 249/5 (1958), 13 pp. MR 20 #7102.
  • Sario, L. [1] Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. Ser. A I Math.-Phys. No. 50 (1948), 79 pp. MR 10, 365.
  • Sario, L. [2] Capacity of the boundary and of a boundary component, Ann. of Math. (2) 59 (1954), 135-144. MR 15, 518.
  • Sario, L. [3] Strong and weak boundary components, J. Analyse Math. 5 (1956/57), 389-398. MR 20 #979.
  • Sario, L. [4] Cf. Ahlfors, L. V.; Sario, L. [5]
  • Sario, L. [5] Cf. Rodin, B.; Sario, L. [6].
  • Sario, L. [6] (with Oikawa, K.) Capacity functions, Die Grundlehren der math. Wissenschaften, Band 149, Springer-Verlag, New York, 1969. MR. 40 #7441.
  • Sario, L. [7] (with Nakai, M.) Classification theory of Riemann surfaces, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970. MR 41 #8660.
  • Schlesinger, E. [1] Conformal invariants and prime ends, Amer. J. Math. 80 (1958), 83-102. MR 20 #1775.
  • Strebel, K. [1] Eine Ungleichung für Extremale Längen, Ann. Acad. Sci. Fenn. Ser. A I Math.-Phys. No. 90 (1951), 8 pp. MR 13, 338.
  • Strebel, K. [2] A remark on the extremal distance of two boundary components, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 842-844. MR 16, 917.
  • Strebel, K. [3] Die extremale Distanz zweier Enden einer Riemannschen Fläche, Ann. Acad. Sci. Fenn. Ser. A I No. 179 (1955), 21 pp. MR 16, 917.
  • Strocik, T. V. [1] Cf. Gol'dberg, A. A.; Stročik, T. V, [1]
  • Strocik, T. V. [2] On conformal mapping of halfstrips of constant width, Ukrain. Mat. Ž. 21 (1969), 60-72=Ukrainian Math. J. 21 (1969), 48-57. MR 39 # 7076.
  • Strocik, T. V. [3] On conformal mapping of a class of half-strips, Sibirsk. Mat. Ž. 11 (1970), 859- 878=Siberian Math. J. 11 (1970), 647-661. MR 42 #7874.
  • Suita, N. [1] Cf. Oikawa, K.; Suita, N. [6]
  • Suita, N. [2] Minimal slit domains and minimal sets, Kōdai Math. Sem. Rep. 17 (1965), 166-186. MR 32 #4258.
  • Suita, N. [3] On radial slit disc mappings, Kōdai Math. Sem. Rep. 18 (1966), 219-228. MR 35 #356.
  • Suita, N. [4] On slit rectangle mappings and continuity of extremal length, Kōdai Math. Sem. Rep. 19 (1967), 425-438. MR 38 #1241.
  • Suita, N. [5] On circular and radial slit disc mappings, Kōdai Math. Sem. Rep. 20 (1968), 127-145. MR 38 #3416.
  • Suita, N. [6] Capacitability and extremal radius, Kōdai Math. Sem. Rep. 20 (1968), 442-447. MR 39 #2962.
  • Suita, N. [7] On continuity of extremal distance and its applications to conformal mappings, Kōdai Math. Sem. Rep. 21 (1969), 236-251. MR 41 #3734.
  • Suita, N. [8] Cf. Oikawa, K.; Suita, N. [10]
  • Tamura, J. [1] (with Oikawa, K.; Yamazaki, K.) Examples of minimal parallel slit domains, Proc. Amer. Math. Soc. 17 (1966), 283-284. MR 32 #4260.
  • Teichmüller, O. [1] Untersuchungen über konforme und quasikonforme Abbildungen, Deutsche Math. 3 (1938), 621-678.
  • Teichmüller, O. [2] Eine Verschärfung des Dreikreisesatzes, Deutsche Math. 4 (1939), 16-22.
  • Teichmüller, O. [3] Extremale quasikonforme Abbildungen und quadratische Differentiate, Abh. Preuss. Akad. Wiss. Math.-Nat. 22 (1939), 1-197.
  • Teichmüller, O. [4] Über Extremalprobleme der konformen Geometrie, Deutsche Math. 6 (1941), 50-77.
  • Tsuji, M. [1] Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 22 #5712.
  • Väisälä, J. [1] Cf. Gehring, F. W.; Väisälä, J. [1]
  • Väisälä, J. [2] On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I No. 298 (1961), 36 pp. MR 25 #4100a.
  • Väisälä, J. [3] On the null-sets for extremal distances, Ann. Acad. Sci. Fenn. Ser. A I No. 332 (1962), 12 pp. MR 26 #5148.
  • Väisälä, J. [4] Cf. Gehring, F. W.; Väisälä, J. [5]
  • Virtanen, K. I. [1] Cf. Lehto, O.; Virtanen, K. K. [1]
  • Warschawski, S. E. [1] Zur Randverzerrung bei konformer Abbildung, Compositio Math. 1 (1935), 314-343.
  • Warschawski, S. E. [2] On the preservation of angles at a boundary point in conformal mapping, Bull. Amer. Math. Soc. 42 (1936), 674-680.
  • Warschawski, S. E. [3] On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942) 280-335. MR 4, 9.
  • Weill, G. G. [1] Reproducing kernels and orthogonal kernels for analytic differentials on Riemann surfaces, Pacific J. Math. 12 (1962), 729-767. MR 27 #292.
  • Wolontis, V. [1] Properties of conformal invariants. Amer. J. Math. 74 (1952), 587-606. MR 14, 36.
  • Yamaguchi, H. [1] Regular operators and spaces of harmonic functions with finite Dirichlet integra, on open Riemann surfaces, J. Math. Kyoto Univ. 8 (1968), 169-198. MR 38 #1254.
  • Yamazaki, K. [1] Cf. Tamura, J.; Oikawa, K.; Yamazaki, K. [1]
  • Yoshida, M. [1] Generalized bilinear relations on open Riemann surfaces, J. Math. Kyoto Univ. 8 (1968), no. 2.
  • Ziemer, W. [1] Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460-473. MR 35 #1776.