Bulletin of the American Mathematical Society

Ranks of Sylow 3-subgroups of ideal class groups of certain cubic fields

Frank Gerth, III

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 79, Number 3 (1973), 521-525.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183534660

Mathematical Reviews number (MathSciNet)
MR0314797

Zentralblatt MATH identifier
0268.12001

Subjects
Primary: 12A30 12A35 12A65
Secondary: 12A25 12A50

Citation

Gerth, Frank. Ranks of Sylow 3-subgroups of ideal class groups of certain cubic fields. Bull. Amer. Math. Soc. 79 (1973), no. 3, 521--525. https://projecteuclid.org/euclid.bams/1183534660


Export citation

References

  • 1. P. Barrucand and H. Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields, J. Number Theory 2 (1970), 7-21. MR 40 #2643.
  • 2. P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory 3 (1971), 226-239. MR 43 # 1945.
  • 3. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. I, Jber. Deutsch. Math. -Verein. 35 (1926), 1-55.
  • 4. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Ia, Jber. Deutsch. Math. -Verein. 36 (1927), 233-311.
  • 5. C. S. Herz, Construction of class fields, Seminar on Complex Multiplication, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966. MR 34 # 1278.
  • 6. H. W. Leopoldt, Zur Struktur der l-Klassengruppe galoisscher Zahlkörper, J. Reine Angew. Math. 199 (1958), 165-174. MR 20 #3116.
  • 7. H. Wada, On cubic Galois extensions of Q(√-3), Proc. Japan Acad. 46 (1970), 397-400.