Bulletin of the American Mathematical Society

Deformations of normal vector fields and the generalized Minkowski problem

Herman Gluck

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 1106-1110.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533205

Mathematical Reviews number (MathSciNet)
MR0284955

Zentralblatt MATH identifier
0227.53036

Subjects
Primary: 53C45: Global surface theory (convex surfaces à la A. D. Aleksandrov) 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 57D25
Secondary: 57D50

Citation

Gluck, Herman. Deformations of normal vector fields and the generalized Minkowski problem. Bull. Amer. Math. Soc. 77 (1971), no. 6, 1106--1110. https://projecteuclid.org/euclid.bams/1183533205


Export citation

References

  • 1. A. D. Alexandrov, Zur Theorie gemischter Volumina konvexer Körper. I, II, III, Mat. Sb. 2 (1937), 947-972; 2 (1937), 1205-1238; 3 (1938).
  • 2. A. D. Alexandrov, Von der Flächenfunktion eines konvexen Körpers, Mat. Sb. 6 (48) (1939), 167.
  • 3. A. D. Alexandrov, Smoothness of the convex surface of bounded Gaussian curvature. C. R. (Dokl.) Acad. Sci. URSS 36 (1942), 195-199. MR 4, 69.
  • 4. M. Berger, On Riemannian structures of prescribed Gauss curvature for compact two-dimensional manifolds, J. Diff. Geometry 5 (1971) (to appear).
  • 5. W. Blaschke, Vorlesungen über differential Geometrie, Berlin, 1930; reprint, Chelsea, New York, 1967.
  • 6. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Julius Springer, Berlin, 1934.
  • 7. H. Busemann, Convex surfaces, Interscience Tracts in Pure and Appl. Math., no. 6, Interscience, New York, 1958. MR 21 #3900.
  • 8. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952. MR 14, 398.
  • 9. H. Gluck, The generalized Minkowski problem in differential geometry in the large, Ann. of Math, (to appear).
  • 10. H. Gluck, The converse to the Four Vertex Theorem, l'Enseignement Math. (to appear).
  • 11. J. Kazdan and F. Warner, Integrability conditions for $\Delta u=k-Ke\sp{\alpha u}$ with applications to Riemannian geometry, Bull. Amer. Math. Soc. 77 (1971), 819-823.
  • 12. H. Lewy, On the existence of a closed surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 104-106.
  • 13. H. Minkowski, Allgemeine Lehrsätze über konvexer Polyeder, Nachr. Ges. Wiss. Göttingen 1897, 198-219.
  • 14. H. Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), 447-495.
  • 15. J. Moser (to appear).
  • 16. L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337-394. MR 15, 347.
  • 17. A. V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sb. 31 (73) (1952), 88-103. (Russian) MR 14, 679.