Bulletin of the American Mathematical Society

On equidistant cubic spline interpolation

I. J. Schoenberg

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 1039-1044.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533186

Mathematical Reviews number (MathSciNet)
MR0282106

Zentralblatt MATH identifier
0273.41007

Subjects
Primary: 41A15: Spline approximation

Citation

Schoenberg, I. J. On equidistant cubic spline interpolation. Bull. Amer. Math. Soc. 77 (1971), no. 6, 1039--1044. https://projecteuclid.org/euclid.bams/1183533186


Export citation

References

  • 1. J. H. Ahlberg, E. N. Nilson and J. L. Walsh, The theory of splines and their applications, Academic Press, New York, 1967. MR 39 #684.
  • 2. T. N. E. Greville, Spline functions, interpolation, and numerical quadrature, Mathematical Methods for Digital Computers, vol. II, Wiley, New York, 1967, Chap. 8, pp. 156-168.
  • 3. T. N. E. Greville, Table for third-degree spline interpolation with equally spaced arguments, Math. Comp. 24 (1970), 179-183. MR 41 #2885.
  • 4. D. Kershaw, The explicit inverses of two commonly occurring matrices, Math. Comp. 23 (1969), 189-191. MR 38 #6754.
  • 5. T. J. Rivlin, An introduction to the approximation of functions, Blaisdell, Waltham, Mass., 1969. MR 40 #3126.
  • 6. I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Parts A and B, Quart. Appl. Math. 4 (1946), 45-99; 112-141. MR 7, 487; MR 8, 55.[Note]
  • 7. I. J. Schoenberg, Cardinal interpolation and spline functions. II. Interpolation of data of power growth, MRC Technical Summer Report #1104, Madison, Wis., 1970; also: J. Approximation Theory (to appear).
  • 8. I. J. Schoenberg and A. Sharma, The interpolatory background of the Euler-Maclaurin quadrature formula, Bull. Amer. Math. Soc. 77 (1971), 1034-1038.