Bulletin of the American Mathematical Society

An existence theorem for ordinary differential equations in Banach spaces

Shui-Nee Chow and J.D. Schuur

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 1018-1020.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533181

Mathematical Reviews number (MathSciNet)
MR0287127

Zentralblatt MATH identifier
A0264.34072

Subjects
Primary: 3495 3404
Secondary: 2630

Citation

Chow, Shui-Nee; Schuur, J.D. An existence theorem for ordinary differential equations in Banach spaces. Bull. Amer. Math. Soc. 77 (1971), no. 6, 1018--1020. https://projecteuclid.org/euclid.bams/1183533181


Export citation

References

  • 1. J. Dieudonné, Deux exemples singuliers d'équations différentielles, Acta Sci. Math. Szeged (Leopoldo Fejér Frederico Riesz LXX annus natis dedicatus, pars B) 12 (1950), 38-40. MR 11, 729.
  • 2. J. A. Yorke, A continuous differential equation in Hilbert space without existence, Funkcial Ekvac. 13 (1970), 19-21.
  • 3. M. A. Krasnoselskiĭ and S. G. Kreĭn, Nonlocal existence theorems and uniqueness theorems for systems of ordinary differential equations, Dokl. Akad. Nauk SSSR 102 (1955), 13-16. (Russian) MR 17, 151.
  • 4. C. Corduneanu, Equazioni differenziali negli spazi di Banach, Teoremi di esistenze e di prolungabilità, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Nat. (8) 23 (1957), 226-230. MR 20 #3312.
  • 5. L. Cesari, Existence theorems for optimal solutions in Pontryagin and Lagrange problems, SIAM. J. Control 3 (1966), 475-498.
  • 6. A. Lasota and C. Olech, On Cesari's semicontinuity condition for set valued mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 711-716. MR 39 #6138.
  • 7. B. J. Pettis, A note on regular Banach spaces, Bull. Amer. Math. Soc. 44 (1938), 420-428.