Bulletin of the American Mathematical Society

Localization and completion in homotopy theory

A. K. Bousfield and D. M. Kan

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 1006-1010.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533178

Mathematical Reviews number (MathSciNet)
MR0296935

Zentralblatt MATH identifier
0239.55013

Subjects
Primary: 5540

Citation

Bousfield, A. K.; Kan, D. M. Localization and completion in homotopy theory. Bull. Amer. Math. Soc. 77 (1971), no. 6, 1006--1010. https://projecteuclid.org/euclid.bams/1183533178


Export citation

References

  • 1. M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Math., no. 100, Springer-Verlag, Berlin and New York, 1969. MR 39 #6883.
  • 2. A. Bousfield and D. Kan, Homotopy with respect to a ring, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1971, pp. 59-64.
  • 3. A. Bousfield and D. Kan, The core of a ring (to appear).
  • 4. E. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107-209.
  • 5. A. Mal'cev, Nilpotent groups without torsion, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 201-212. (Russian) MR 10, 507.
  • 6. J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR 36 #5942.
  • 7. M. Mimura, G. Nishida and H. Toda, Localization of CW-complexes and its applications (to appear).
  • 8. D. Quillen, An application of simplicial profinite groups, Comment Math. Helv. 44 (1969), 45-60. MR 39 #3490.
  • 9. D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 41 #2678.
  • 10. J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., no. 5, Springer-Verlag, Berlin and New York, 1964. MR 31 #4785.
  • 11. D. Sullivan, Geometric topology. I: Localization, periodicity and Galois symmetry, M.I.T., Cambridge, Mass., 1970 (mimeographed notes).