Bulletin of the American Mathematical Society

Pfister forms and $K$-theory of fields

Richard Elman and T. Y. Lam

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 971-974.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533169

Mathematical Reviews number (MathSciNet)
MR0283004

Zentralblatt MATH identifier
0226.15009

Subjects
Primary: 15A63: Quadratic and bilinear forms, inner products [See mainly 11Exx] 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67]
Secondary: 13D15: Grothendieck groups, $K$-theory [See also 14C35, 18F30, 19Axx, 19D50]

Citation

Elman, Richard; Lam, T. Y. Pfister forms and $K$-theory of fields. Bull. Amer. Math. Soc. 77 (1971), no. 6, 971--974. https://projecteuclid.org/euclid.bams/1183533169


Export citation

References

  • 1. J. K. Arason and A. Pfister, Beweis des Krullschen Durchschnittsatzes für den Wittring (to appear).
  • 2. R. Elman and T. Y. Lam, Determination of kn (n≧3) for global fields, Proc. Amer. Math. Soc. (to appear).
  • 3. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1969/70), 318-344. MR 41 #5465.
  • 4. A. Pfister, Multiplikative quadratische Formen, Arch. Math. 16 (1965), 363-370. MR 32 #2408.
  • 5. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31-44.