Bulletin of the American Mathematical Society

Bessel potentials. Inclusion relations among classes of exceptional sets

David R. Adams and Norman G. Meyers

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 968-970.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533168

Mathematical Reviews number (MathSciNet)
MR0284607

Zentralblatt MATH identifier
0232.31008

Subjects
Primary: 31C15: Potentials and capacities 31B15: Potentials and capacities, extremal length
Secondary: 26A33: Fractional derivatives and integrals

Citation

Adams, David R.; Meyers, Norman G. Bessel potentials. Inclusion relations among classes of exceptional sets. Bull. Amer. Math. Soc. 77 (1971), no. 6, 968--970. https://projecteuclid.org/euclid.bams/1183533168


Export citation

References

  • 1. N. Aronszajn and K. T. Smith, Functional spaces and functional completion, Ann. Inst. Fourier Grenoble 6 (1955/56), 125-185. MR 18, 319.
  • 2. L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, no. 13, Van Nostrand, Princeton, N. J., 1967. MR 37 #1576.
  • 3. B. Fuglede, On generalized potentials of functions in the Lebesgue classes, Math. Scand. 8 (1960), 287-304. MR 28 #2241.
  • 4. N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
  • 5. J. Serrin, Local behaviour of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. MR 30 #337.
  • 6. S. Taylor, On the connexion between Hausdorff measures and generalized capacity, Proc. Cambridge Philos. Soc. 57 (1961), 524-531. MR 24 #A3254.