Bulletin of the American Mathematical Society

The functional-differential equation $y'\left( x \right) = ay\left( {\lambda x} \right) + by\left( x \right)$

Tosio Kate and J. B. McLeod

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 891-937.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533162

Mathematical Reviews number (MathSciNet)
MR0283338

Zentralblatt MATH identifier
0236.34064

Subjects
Primary: 34J10 34J99

Citation

Kate, Tosio; McLeod, J. B. The functional-differential equation $y'\left( x \right) = ay\left( {\lambda x} \right) + by\left( x \right)$. Bull. Amer. Math. Soc. 77 (1971), no. 6, 891--937. https://projecteuclid.org/euclid.bams/1183533162


Export citation

References

  • 1. L. Fox, D. F. Mayers, J. R. Ockendon and A. B. Tayler, On a functional differential equation, J. Inst. Math. Appl. (to appear).
  • 2. K. Mahler, On a special functional equation, J. London Math. Soc. 15 (1940), 115-123. MR 2, 133.
  • 3. W. A. Harris, Jr. and Y. Sibuya (editors), Proceedings United States-Japan seminar on differential and functional equations (University of Minnesota, Minneapolis, Minn., 1967), Benjamin, New York, 1967. MR 36 #5415.
  • 4. N. G. de Bruijn, The asymptotically periodic behavior of the solutions of some linear functional equations, Amer. J. Math. 71 (1949), 313-330. MR 10, 541.
  • 5. N. G. de Bruijn, On some linear functional equations, Publ. Math. Debrecen 1 (1950), 129-134. MR 12, 106.
  • 6. N. G. de Bruijn, The difference-differential equation F'(x) = eαx+β F(x-1). I, II, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. I5 (1953), 449-464. MR 15, 629.
  • 7. E. W. Bowen and G. R. Morris, private communication.
  • 8. P. O. Frederickson, Global solutions to certain non-linear functional-differential equations, J. Math. Anal. Appl. 33 (1971), 355-358.
  • 9. P. O. Frederickson, Analytic solutions for certain functional-differential equations of advanced type (to appear).
  • 10. R. E. Bellman and K. L. Cooke, Differential-difference equations, Academic Press, New York, 1963. MR 26 #5259.
  • 11. L. Schwartz, Théorie des distributions, Publ. Math. Univ. Strasbourg, no. 9-10, Hermann, Paris, 1966. MR 35 #730.