Bulletin of the American Mathematical Society

Some new results in the Kolmogorov-Sinai theory of entropy and ergodic theory

Donald S. Ornstein

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 878-890.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533161

Mathematical Reviews number (MathSciNet)
MR0288233

Zentralblatt MATH identifier
0269.60032

Subjects
Primary: 28A65
Secondary: 54H20: Topological dynamics [See also 28Dxx, 37Bxx]

Citation

Ornstein, Donald S. Some new results in the Kolmogorov-Sinai theory of entropy and ergodic theory. Bull. Amer. Math. Soc. 77 (1971), no. 6, 878--890. https://projecteuclid.org/euclid.bams/1183533161


Export citation

References

  • 1. P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, no. 3, Math. Soc. Japan, Tokyo, 1956; reprint, Chelsea, New York, 1960, pp. 54-55. MR 20 #3958.
  • 2. P. Billingsley, Ergodic theory and information, Wiley, New York, 1965. MR 33 #254.
  • 3. A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR 119 (1958), 861-864. (Russian) MR 21 #2035a.
  • 4. A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphisms, Dokl. Akad. Nauk SSSR 124 (1959), 754-755. (Russian) MR 21 #2035b; 21, 1599.
  • 5. Ja. G. Sinaĭ, A weak isomorphism of transformations with an invariant measure, Dokl. Akad. Nauk SSSR 147 (1962), 797-800 =Soviet Math. Dokl. 3 (1962), 1725-1729. MR 28 #5164a; 28 #1247.
  • 6. L. D. Mešalkin, A case of isomorphism of Bernoulli schemes, Dokl. Akad. Nauk SSSR 128 (1959), 41-44. (Russian) MR 22 #1650.
  • 7. D. S. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4 (1970), 337-352. MR 41 #1973.
  • 8. M. Smorodinsky, An exposition of Ornstein's isomorphism theorem, Advances in Math. (to appear).
  • 9. D. S. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339-348.
  • 10. D. S. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts, Advances in Math. 5 (1970), 349-364.
  • 11. D. S. Ornstein, Imbedding Bernoulli shifts in flows, Contributions to Ergodic Theory and Probability, Lecture Notes in Math., Springer-Verlag, Berlin, 1970, pp. 178-218.
  • 12. D. S. Ornstein, A simpler example of a Kolmogorov automorphism that is not a Bernoulli shift, Advances in Math, (to appear).
  • 13. N. A. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transformations, Advances in Math. 5 (1970), 365-394.
  • 14. D. S. Ornstein, An application of erogdic theory to probability theory, Advances in Math. (to appear).
  • 15. V. A. Rohlin and Ja. G. Sinaĭ, Construction and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038-1041 =Soviet Math. Dokl. 2 (1961), 1611-1614. MR 27 #2604.
  • 16. S. Ito, H. Murata and H. Totoki, A remark on the isomorphism theorem for weak Bernoulli transformations (to appear).
  • 17. R. McCabe and P. Shields, A class of Markov shifts which are Bernoulli shifts, Advances in Math, (to appear).
  • 18. M. Smorodinsky, A partition for a Bernoulli shift that is not weak Bernoulli (to appear).
  • 19. R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573-1576. MR 35 #3031.
  • 20. Ja. G. Sinaĭ, Markov partitions and Y-diffeomorphisms, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 64-89 =Functional Anal. Appl. 2 (1968), 61-82. MR 38 #1361.
  • 21. Y. Katznelson, Ergodic automorphisms of Tn are Bernoulli shifts, Israel J. Math. (to appear).
  • 22. R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414.
  • 23. V. A. Rohlin, Metric properties of endomorphisms of compact commutative groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 867-874; English transl., Amer. Math. Soc. Transl. (2) 64 (1967), 244-252. MR 29 #5955.
  • 24. S. A. Juzvinskiĭ, Metric properties of endomorphisms of compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295-1328; English transl., Amer. Math. Soc. Transl. (2) 66 (1968), 63-98. MR 33 #2798.
  • 25. A. N. Kolmogorov, Théorie générale des systèms dynamiques et mécanique classique, Proc. Internat. Congress Math. (Amsterdam), vol. 1, North-Holland, Amsterdam, 1957, pp. 315-333. MR 20 #4066.
  • 26. V. I. Arnold and A. Avez, Ergodic problems of classical mechanics, Benjamin, New York, 1968. MR 38 #1233.
  • 27. Ja. G. Sinaĭ, On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Dokl. Akad. Nauk SSSR 153 (1963), 1261-1264 =Soviet Math. Dokl. 4 (1963), 1818-1822. MR 35 #5576.
  • 28. D. S. Ornstein, A mixing transformation for which Pinsker's conjecture fails (to appear).
  • 29. D. S. Ornstein, A K-automorphism with no square root and Pinsker's conjecture (to appear).
  • 30. D. S. Ornstein, The isomorphism theorem for Bernoulli flows (to appear).