Bulletin of the American Mathematical Society

On the class number of imaginary quadratic fields

A. Baker

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 5 (1971), 678-684.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533019

Mathematical Reviews number (MathSciNet)
MR0286775

Zentralblatt MATH identifier
0221.12006

Subjects
Primary: 12A25 12A50
Secondary: 10F35

Citation

Baker, A. On the class number of imaginary quadratic fields. Bull. Amer. Math. Soc. 77 (1971), no. 5, 678--684. https://projecteuclid.org/euclid.bams/1183533019


Export citation

References

  • 1. E. A. Anfert'eva and N. G.Čudakov, Minima of the norm function in imaginary quadratic fields, Dokl. Akad. Nauk SSSR 183 (1968), 255-256= Soviet Math. Dokl. 9 (1968), 1342-1344. MR 39 #5472.
  • 2. E. A. Anfert'eva and N. G.Čudakov, Effective lower bounds for the minimum of the norm of ideals in quadratic fields, Mat. Sb. 82 (1970), 55-66 =Math. USSR Sb. 11 (1970), 47-58.
  • 3. A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III, IV, Mathematika 13 (1966), 204-216; ibid. 14 (1967), 102-107, 220-228; ibid. 15 (1968), 204-216. MR 36 #3732.
  • 4. A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms; II. The Diophantine equation y2=x3+k, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/68), 173-208. MR 37 #4005; 4006.
  • 5. A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1969), 98-102. MR 39 #2723.
  • 6. A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math, (to appear).
  • 7. A. Baker, A sharpening of thè bounds for linear forms in logarithms, Acta Arith. (to appear).
  • 8. A. Baker and A. Schinzel, On the least integers represented by the genera of binary quadratic forms, Acta Arith. (to appear).
  • 9. A. Baker and H. Stark, On a fundamental inequality in number theory, Ann. of Math, (to appear).
  • 10. R. Brauer, On the zeta-functions of algebraic number fields, Amer. J. Math. 69 (1947), 243-250. MR 8, 567.
  • 11. A. O. Gel'fond, Transcendental and algebraic numbers, GITTL, Moscow, 1952; English transl., Dover, New York, 1960. MR 15, 292; MR 22 #2598.
  • 12. A. O. Gel'fond and Yu. V. Linnik, On Thue's method in the problem of effectiveness in quadratic fields, Dokl. Akad. Nauk SSSR 61 (1948), 773-776. (Russian) MR 10, 354.
  • 13. K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. MR 14, 725.
  • 14. H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 5 (1934), 150-160.
  • 15. H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. Oxford Ser. 5 (1934), 293-301.
  • 16. C. L. Siegel, Über die Classenzahl quadratischer Zahlkorper, Acta Arith. 1 (1935), 83-86; Ges. Abhandlungen I, 406-409.
  • 17. H. M. Stark, On complex quadratic fields with class-number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112-119.
  • 18. H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27. MR 36 #5102.
  • 19. H. M. Stark, A transcendence theorem for class-number problems, Ann. of Math, (to appear).