Bulletin of the American Mathematical Society

A note on matrix summability of a class of Fourier series

Badri N. Sahney

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 75, Number 6 (1969), 1374-1378.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183530933

Mathematical Reviews number (MathSciNet)
MR0267347

Zentralblatt MATH identifier
0187.02301

Citation

Sahney, Badri N. A note on matrix summability of a class of Fourier series. Bull. Amer. Math. Soc. 75 (1969), no. 6, 1374--1378. https://projecteuclid.org/euclid.bams/1183530933


Export citation

References

  • 1. G. H. Hardy, Divergent series, Oxford, 1949.
  • 2. G. H. Hardy and J. E. Littlewood, Notes on the theory of series. XVIII. On the convergence of Fourier series, Proc. Cambridge Philos. Soc. 31 (1935), 317-323.
  • 3. E. Hille and J. D. Tamarkin, On the summability of Fourier series, Proc. Nat. Acad. Sci. 14 (1928), 915-918.
  • 4. E. Hille and J. D. Tamarkin, On the summability of Fourier series, J. Trans. Amer. Math. Soc. 34 (1932), 757-783.
  • 5. K. S. K. Iyengar, New convergence and summability tests for Fourier series, Prod. Ind. Acad. Sci. Sec. A 18 (1943), 113-120.
  • 6. K. S. K. Iyengar, Notes on the summability. II. On the relation between summability by Nörlund means of a certain type and summability by Valiron means, Half Yearly J. Mysore Univ. Sec. B 4 (1944), 161-166.
  • 7. C. T. Rajagopal, Nörlund summability of Fourier series, Proc. Cambridge Philos. Soc. 59 (1963), 47-53.
  • 8. B. N. Sahney, On the (H, p) summability of Fourier series, Boll. Un. Mate. Ital. 16 (1961), 156-163.
  • 9. B. N. Sahney, On the Nörlund summability of Fourier series, Pacific J. Math. 13 (1963), 251-262.
  • 10. J. A. Siddiqi, On the harmonic summability of Fourier series, Proc. Ind. Acad. Sci. Sec. A. 28 (1949), 527-531.
  • 11. O. P. Varshney, On the Nörlund summability of Fourier series, Acad. Roy. Belg. Bull. Cl. Sci. (5) 52 (1966), 1552-1558.
  • 12. A. Zygmund, Trigonometric series, 2nd ed., Chelsea, New York, 1952.