Bulletin of the American Mathematical Society

Some nonzero homotopy groups of spheres

Edward B. Curtis

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 75, Number 3 (1969), 541-544.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183530552

Mathematical Reviews number (MathSciNet)
MR0245007

Zentralblatt MATH identifier
0183.51604

Citation

Curtis, Edward B. Some nonzero homotopy groups of spheres. Bull. Amer. Math. Soc. 75 (1969), no. 3, 541--544. https://projecteuclid.org/euclid.bams/1183530552


Export citation

References

  • 1. J. F. Adams, Stable homotopy theory, Springer-Verlag, Berlin, 1964.
  • 2. J. F. Adams, On the groups J(X). IV, Topology 5 (1966), 21-71.
  • 3. M. G. Barratt (unpublished).
  • 4. A. K. Bousfield et al., The mod-p-lower central series and the Adams spectral sequence. Topology 5 (1966), 331-342.
  • 5. E. B. Curtis, Simplicial homotopy theory, Lecture Notes, Aarhus University, Denmark, 1967.
  • 6. D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math (2) 67 (1958), 282-312.
  • 7. M. Mahowald, The meta-stable homotopy of Sn, Mem. Amer. Math. Soc. No. 72, 1967.
  • 8. M. Mahowald, On the order of the image of J, Topology 6 (1967), 371-378.
  • 9. C. R. F. Maunder, On the differentials in the Adams spectral sequence for the stable homotopy groups of spheres. I, II, Proc. Cambridge Philos. Soc. 61 (1965), 53-60, 855-868.
  • 10. D. L. Rector, An unstable Adams spectral sequence, Topology 5 (1966), 343-396.
  • 11. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies No. 49, Princeton Univ. Press, Princeton, N. J., 1962.