Bulletin of the American Mathematical Society

Mapping cylinders and the annulus conjecture

L. S. Husch

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 75, Number 3 (1969), 506-508.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183530543

Mathematical Reviews number (MathSciNet)
MR0238286

Zentralblatt MATH identifier
0175.50001

Citation

Husch, L. S. Mapping cylinders and the annulus conjecture. Bull. Amer. Math. Soc. 75 (1969), no. 3, 506--508. https://projecteuclid.org/euclid.bams/1183530543


Export citation

References

  • 1. R. H. Bing, Decompositions of E3, Topology of 3-manifolds and related topics (Proc. The University of Georgia Institute, (1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 5-21.
  • 2. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
  • 3. M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
  • 4. C. H. Edwards, Jr., Open 3-manifolds which are simply connected at infinity, Proc. Amer. Math. Soc. 14 (1963), 391-395.
  • 5. R. C. Lacher, Cell-like mappings ofANR's, Bull. Amer. Math. Soc. 74 (1968), 933-935.
  • 6. T. M. Price, Decompositions of S3 and pseudo-isotopies, Notices Amer. Math. Soc. 15 (1968), 136.
  • 7. J. Stallings, The piecewise linear structure of euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481-489.