Bulletin of the American Mathematical Society

An axiomatic approach to the boundary theories of Wiener and Royden

Peter A. Loeb and Bertram Walsh

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 74, Number 5 (1968), 1004-1007.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183529952

Mathematical Reviews number (MathSciNet)
MR0234009

Zentralblatt MATH identifier
0162.43103

Citation

Loeb, Peter A.; Walsh, Bertram. An axiomatic approach to the boundary theories of Wiener and Royden. Bull. Amer. Math. Soc. 74 (1968), no. 5, 1004--1007. https://projecteuclid.org/euclid.bams/1183529952


Export citation

References

  • 1. M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay, 1960.
  • 2. C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse Math. (2) 32 (1963).
  • 3. C. Constantinescu and A. Cornea, Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57.
  • 4. S. Kakutani, Concrete representation of abstract (M)-spaces, Ann. of Math. (2) 42 (1941), 994-1024.
  • 5. P. A. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208.
  • 6. P. A. Loeb, A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. 18 (1967), 282-283.
  • 7. P. A. Loeb and B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) IS (1965), 597-600.
  • 8. B. Walsh and P. A. Loeb, Nuclearity in axiomatic potential theory, Bull. Amer.Math. Soc. 72 (1966), 685-689.