Bulletin of the American Mathematical Society

Toeplitz and Wiener-Hopf operators in $H^\infty +C$

R. G. Douglas

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 74, Number 5 (1968), 895-899.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183529921

Mathematical Reviews number (MathSciNet)
MR0229070

Zentralblatt MATH identifier
0167.13004

Citation

Douglas, R. G. Toeplitz and Wiener-Hopf operators in $H^\infty +C$. Bull. Amer. Math. Soc. 74 (1968), no. 5, 895--899. https://projecteuclid.org/euclid.bams/1183529921


Export citation

References

  • 1. F. V. Atkinson, The normal solubility of linear equations in normed spaces, Mat. Sb. 28 (70) (1951), 3-14. (Russian)
  • 2. L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
  • 3. L. A. Coburn, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722-726.
  • 4. A. Devinatz, Toeplitz operators on H2 spaces, Trans. Amer. Math. Soc. 112 (1964), 304-317.
  • 5. A. Devinatz, "On Wiener-Hopf operators" in Functional analysis, edited by B. Gelbaum, Thompson, Washington, D. C., 1967.
  • 6. R. G. Douglas, On the spectrum of a class of Toeplitz operators, J. Math. Mech. (to appear).
  • 7. I. C. Gohberg and M. G. Kreĭn, Systems of integral equations on the half-line with kernels depending on the difference of the arguments, Uspehi Mat. Nauk 13 (1958), No. 2 (80), 3-72; English transl., Amer. Math. Soc. Transl. (2) 14 (1960), 217-287.
  • 8. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
  • 9. D. E. Sarason, Generalized interpolation on H, Trans. Amer. Math. Soc. 127 (1967), 179-203.
  • 10. H. Widom, "Toeplitz matrices" in Studies in real and complex analysis, Math. Assoc. Amer., Buffalo, N. Y., and Prentice-Hall, Englewood Cliffs, N. J., 1965.
  • 11. H. Widom, Toeplitz operators on Hp, Pacific. J. Math. 19 (1966), 573-582.
  • 12. A. Wintner, Zur Theorie der beschränkten Bilinearformen, Math. Z. 30 (1929), 228-282.