Bulletin of the American Mathematical Society

A generalized Morse theory

R. S. Palais and S. Smale

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 70, Number 1 (1964), 165-172.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183525794

Mathematical Reviews number (MathSciNet)
MR0158411

Zentralblatt MATH identifier
0119.09201

Citation

Palais, R. S.; Smale, S. A generalized Morse theory. Bull. Amer. Math. Soc. 70 (1964), no. 1, 165--172. https://projecteuclid.org/euclid.bams/1183525794


Export citation

References

  • 1. F. Browder, Nonlinear elliptic boundary value problems, Bull, Amer. Math. Soc. 69 (1963), 862-873.
  • 2. J. Eells, Jr., On the geometry of function spaces, International Symposium on Algebraic Topology, pp. 303-308, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958.
  • 3. S. Lang, Introduction to differential manifolds;Interscience, New York, 1962.
  • 4. C. B. Morrey, Existence and differentiability theorems for variational problems for multiple integrals, Partial Differential Equations and Continuum Mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961.
  • 5. C. B. Morrey, Multiple integral problems in the calculus of variations and related topics, Ann. Scuola Norm. Sup. Pisa 14 (1960), 1-61.
  • 6. M. Morse, The calculus of variations in the large, Amer. Math. Soc. Colloq. Publ. Vol. 18, Amer. Math. Soc., Providence, R. I., 1934.
  • 7. J. Moser, On the regularity problem for elliptic and parabolic differential equations, Partial Differential Equations and Continuum Mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961.
  • 8. L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm Sup. Pisa 13 (1959), 115-162.