Bulletin of the American Mathematical Society

Von Neumann on measure and ergodic theory

Paul R. Halmos

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 64Number 3, Part 2 (1958), 86-94.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183522373

Mathematical Reviews number (MathSciNet)
MR0097294

Zentralblatt MATH identifier
0080.00415

Citation

Halmos, Paul R. Von Neumann on measure and ergodic theory. Bull. Amer. Math. Soc. 64 (1958), 86--94. https://projecteuclid.org/euclid.bams/1183522373


Export citation

References

  • 1. G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. vol. 17 (1931) pp. 656-660.
  • 2. G. D. Birkhoff and B. O. Koopman, Recent contributions to the ergodic theory, Proc. Nat. Acad. Sci. vol. 18 (1932) pp. 279-282.
  • 3. B. O. Koopman, Hamiltonian systems and transformations in Hilbert space, Proc. Nat. Acad. Sci. vol. 17 (1931) pp. 315-318.
  • 4. John von Neumann, Die Zerlegung eines Intervalles in abzählbar viele kongruente Teilmengen, Fund. Math. vol. 11 (1928) pp. 230-238.
  • 5. John von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. vol. 13 (1929) pp. 73-116.
  • 6. John von Neumann, Zusatz zur Arbeit "Zur allgemeinen Theorie des Masses", Fund. Math. vol. 13 (1929) p. 333.
  • 7. John von Neumann, Algebraische Repräsentanten der Funktionen "bis auf eine Menge vom Masse Null", J. Reine Angew. Math. vol. 165 (1931) pp. 109-115.
  • 8. John von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. vol. 18 (1932) pp. 70-82.
  • 9. John von Neumann and B. O. Koopman, Dynamical systems of continuous spectra, Proc. Nat. Acad. Sci. vol. 18 (1932) pp. 255-263.
  • 10. John von Neumann, Physical applications of the ergodic hypothesis, Proc. Nat. Acad. Sci. vol. 18 (1932) pp. 263-266.
  • 11. John von Neumann, Einige Sätze über messbare Abbildungen, Ann. of Math. vol. 33 (1932) pp. 574-586.
  • 12. John von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. vol. 33 (1932) pp. 587-642.
  • 13. John von Neumann, Zusätze zur Arbeit "Zur Operatorenmethode...", Ann. of Math. vol. 33 (1932) pp. 789-791.
  • 14. John von Neumann, Zum Haarschen Mass in Topologischen Gruppen, Compositio Math. vol. 1 (1934) pp. 106-114.
  • 15. John von Neumann and M. H. Stone, The determination of representative elements in the residual classes of a Boolean algebra, Fund. Math. vol. 25 (1935) pp. 353-378.
  • 16. John von Neumann, The uniqueness of Haar's measure, Mat. Sbornik vol. 1 (1936) pp. 721-734.
  • 17. John von Neumann, On rings 0f operators. III, Ann. of Math. vol. 41 (1940) pp. 94-161.
  • 18. John von Neumann and P. R. Halmos, Operator methods in classical mechanics, II, Ann. of Math. vol. 43 (1942) pp. 332-350.
  • 19. John von Neumann, Functional operators. I. Measures and integrals, Princeton, 1950.