Bulletin of the American Mathematical Society

Theory of operators, Part II. operator algebras

Richard V. Kadison

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 64Number 3, Part 2 (1958), 61-85.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183522372

Mathematical Reviews number (MathSciNet)
MR0097298

Zentralblatt MATH identifier
0080.00414

Citation

Kadison, Richard V. Theory of operators, Part II. operator algebras. Bull. Amer. Math. Soc. 64 (1958), 61--85. https://projecteuclid.org/euclid.bams/1183522372


Export citation

References

  • 1. J. Dixmier, Les algèbres d'opérateurs dans ľespace Hilbertien, Paris, 1957.
  • 2. J. Dixmier, Sur les anneaux d'opérateurs dans les espaces hilbertiens, C. R. Acad. Sci. Paris vol. 238 (1954) pp. 439-441.
  • 3. H. Dye, The Radon-Nikodým theorem for finite rings of operators, Trans. Amer. Math. Soc. vol. 72 (1952) pp. 243-280.
  • 4. H. Dye, The unitary structure in finite rings of operators, Duke Math. J. vol. 20 (1953) pp. 55-70.
  • 5. K. Friedrichs, Spektraltheorie halbbeschränkter Operatoren, Math. Ann. vol. 109 (1934) pp. 465-487.
  • 6. I. Gelfand and M. Neumark, On the imbedding of normed rings into the ring of operators in Hilbert space, Rec. Math. (Mat. Sbornik) N.S. vol. 12 (1943) pp. 197-213.
  • 7. E. Griffen, Some contributions to the theory of rings of operators, Trans. Amer. Math. Soc. vol. 75 (1953) pp. 471-504.
  • 8. E. Griffen, Some contributions to the theory of rings of operators, II, Trans. Amer, Math. Soc. vol. 79 (1955) pp. 389-400.
  • 9. R. Kadison, On the additivity of the trace in finite factors, Proc. Nat. Acad. Sci. U.S.A. vol. 41 (1955) pp. 385-387.
  • 10. R. Kadison, Isomorphisms of factors of infinite type, Canadian J. Math. vol. 7 (1955) pp. 322-327.
  • 11. R. Kadison, Unitary invariants for representations of operator algebras, Ann. of Math. vol. 66 (1957) pp. 304-379.
  • 12. R. Kadison, Operator algebras with a faithful weakly-closed representation, Ann. of Math. vol. 64 (1956) pp. 175-181.
  • 13. I. Kaplansky, Quelques resultats sur les anneaux d'opérateurs, C. R. Acad. Sci. Paris vol. 231 (1950) pp. 485-486.
  • 14. I. Kaplansky, Projections in Banach algebras, Ann. of Math. vol. 53 (1951) pp. 235-249.
  • 15. I. Kaplansky, Algebras of type I, Ann. of Math. vol. 56 (1952) pp. 460-472.
  • 16. F. Mautner, Unitary representations of locally compact groups, Ann. of Math, vol. 51 (1950) pp. 1-25.
  • 17. F. Murray and J. von Neumann, On rings of operators, Ann. of Math. vol. 37 (1936) pp. 116-229.
  • 18. F. Murray and J. von Neumann, On rings of operators, II, Trans. Amer. Math. Soc. vol. 41 (1937) pp. 208-248.
  • 19. F. Murray and J. von Neumann, On rings of operators, IV, Ann. of Math. vol. 44 (1943) pp. 716-808.
  • 20. J. von Neumann, Zur Algebra der Funktionaloperatoren und Theorie der normalen Operatoren, Math. Ann. vol. 102 (1929) pp. 370-427.
  • 21. J. von Neumann, Über Funktionen von Funktionaloperatoren, Ann. of Math. vol. 32 (1931) pp. 191-226.
  • 22. J. von Neumann, On rings of operators, III, Ann. of Math. vol. 41 (1940) pp. 94-161.
  • 23. J. von Neumann, On infinite direct products, Compositio Math. vol. 6 (1938) pp. 1-77.
  • 24. J. von Neumann, On rings of operators, Reduction theory, Ann. of Math. vol. 50 (1949) pp. 401-485.
  • 25. J. von Neumann, On some algebraical properties of operator rings, Ann. of Math. vol. 44 (1943) pp. 709-715.
  • 26. J. von Neumann, On an algebraic generalization of the quantum mechanical formalism I, Rec. Mat. (Mat. Sbornik)N.S. vol. 1 (1936) pp. 415-484.
  • 27. R. Pallu de la Barrière, Sur les algebres d'opérateurs dans les espaces hilbertiens, Bull. Soc. Math. France vol. 82 (1954) pp. 1-51.
  • 28. L. Pukánszky, Some examples of factors, Publicationes Mathematicae vol. 4 (1956) pp. 135-156.
  • 29. C. Rickart, Banach algebras with an adjoint operation, Ann. of Math. vol. 47 (1946) pp. 528-549.
  • 30. I. Segal, A non-commutative extension of abstract integration, Ann. of Math. vol. 57 (1953) pp. 401-457.

See also

  • Part I: F. J. Murray. Theory of operators, Part I. single operators. Bull. Amer. Math. Soc., Volume 64, Number 3, Part 2 (1958), 57--60.