Bayesian Analysis

Bayes Factors for Partially Observed Stochastic Epidemic Models

Muteb Alharthi, Theodore Kypraios, and Philip D. O’Neill

Full-text: Open access

Abstract

We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data.

Article information

Source
Bayesian Anal., Volume 14, Number 3 (2019), 907-936.

Dates
First available in Project Euclid: 11 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.ba/1560240033

Digital Object Identifier
doi:10.1214/18-BA1134

Mathematical Reviews number (MathSciNet)
MR3960776

Zentralblatt MATH identifier
07089631

Subjects
Primary: 62P10: Applications to biology and medical sciences
Secondary: 62F15: Bayesian inference

Keywords
Bayes factor power posterior stochastic epidemic model

Rights
Creative Commons Attribution 4.0 International License.

Citation

Alharthi, Muteb; Kypraios, Theodore; O’Neill, Philip D. Bayes Factors for Partially Observed Stochastic Epidemic Models. Bayesian Anal. 14 (2019), no. 3, 907--936. doi:10.1214/18-BA1134. https://projecteuclid.org/euclid.ba/1560240033


Export citation

References

  • Alharthi, M. (2016). “Bayesian model assessment for stochastic epidemic models.” Ph.D. thesis, University of Nottingham. URL http://eprints.nottingham.ac.uk/id/eprint/33182
  • Andersson, H. and Britton, T. (2000). Stochastic Epidemic Models and their Statistical Analysis. New York: Springer.
  • Atkinson, K. and Han, W. (2004). Elementary Numerical Analysis. New York: Wiley, 3rd edition.
  • Becker, N. and Yip, P. (1989). “Analysis of variations in an infection rate.” Australian Journal of Statistics, 31(1): 42–52.
  • Britton, T., Kypraios, T., and O’Neill, P. D. (2011). “Inference for epidemics with three levels of mixing: methodology and application to a measles outbreak.” Scandinavian Journal of Statistics, 38(3): 578–599.
  • Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). “Deviance information criteria for missing data models.” Bayesian Analysis, 1(4): 651–673.
  • Deeth, L., Deardon, R., and Gillis, D. J. (2015). “Model choice using the Deviance Information Criterion for latent conditional individual-level models of infectious disease spread.” Epidemiologic Methods, 4(1): 47–68.
  • Eichner, M. and Dietz, K. (2003). “Transmission potential of smallpox: estimates based on detailed data from an outbreak.” American Journal of Epidemiology, 158(2): 110–117.
  • Fan, Y., Wu, R., Chen, M.-H., Kuo, L., and Lewis, P. O. (2011). “Choosing among partition podels in Bayesian Phylogenetics.” Molecular Biology and Evolution, 28(1): 523–532.
  • Friel, N., Hurn, M., and Wyse, J. (2014). “Improving power posterior estimation of statistical evidence.” Statistics and Computing, 24(5): 709–723.
  • Friel, N. and Pettitt, A. N. (2008). “Marginal likelihood estimation via power posteriors.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(3): 589–607.
  • Gelman, A. and Meng, X.-L. (1998). “Simulating normalizing constants: From importance sampling to bridge sampling to path sampling.” Statistical Science, 13(2): 163–185.
  • Gibson, G. J. and Renshaw, E. (1998). “Estimating parameters in stochastic compartmental models using Markov chain methods.” Mathematical Medicine and Biology, 15(1): 19–40.
  • Knock, E. S. and O’Neill, P. D. (2014). “Bayesian model choice for epidemic models with two levels of mixing.” Biostatistics, 15(1): 46–59.
  • Kypraios, T. (2007). “Efficient Bayesian inference for partially observed stochastic epidemics and a new class of semi-parametric time series models.” Ph.D. thesis, Lancaster University. URL http://eprints.lancs.ac.uk/26392/
  • Lartillot, N., Philippe, H., and Lewis, P. (2006). “Computing Bayes factors using thermodynamic integration.” Systematic Biology, 55(2): 195.
  • Lau, M. S., Marion, G., Streftaris, G., and Gibson, G. J. (2014). “New model diagnostics for spatio-temporal systems in epidemiology and ecology.” Journal of The Royal Society Interface, 11(93): 20131093.
  • Neal, P. J. and Roberts, G. O. (2004). “Statistical inference and model selection for the 1861 Hagelloch measles epidemic.” Biostatistics, 5(2): 249–261.
  • O’Neill, P. D. and Marks, P. J. (2005). “Bayesian model choice and infection route modelling in an outbreak of Norovirus.” Statistics in Medicine, 24(13): 2011–2024.
  • O’Neill, P. D. and Roberts, G. O. (1999). “Bayesian inference for partially observed stochastic epidemics.” Journal of the Royal Statistical Society: Series A (Statistics in Society), 162(1): 121–129.
  • O’Neill, P. D. and Wen, C. (2012). “Modelling and inference for epidemic models featuring non-linear infection pressure.” Mathematical Biosciences, 238(1): 38–48.
  • Pfeilsticker, A. (1861). “Beiträge zur Pathologie der Masern mit besonderer Berücksichtgung der Statistischen Verhältnisse.” Ph.D. thesis, Eberhard-Karls-Universität, Tübingen.
  • Severo, N. C. (1969). “Generalizations of some stochastic epidemic models.” Mathematical Biosciences, 4(3): 395–402.
  • Stockdale, J. E., O’Neill, P. D., and Kypraios, T. (2017). “Modelling and Bayesian analysis of the Abakaliki smallpox data.” Epidemics, 19: 13–23.
  • Touloupou, P., Alzahrani, N., Neal, P., Spencer, S. E. F., and McKinley, T. J. (2018). “Efficient model comparison techniques for models requiring large scale data augmentation.” Bayesian Analysis, 13(2): 437–459.
  • Worby, C. J. (2013). “Statistical inference and modelling for nosocomial infections and the incorporation of whole genome sequence data.” Ph.D. thesis, University of Nottingham. URL http://eprints.nottingham.ac.uk/id/eprint/13154
  • Xie, W., Lewis, P. O., Fan, Y., Kuo, L., and Chen, M.-H. (2011). “Improving marginal likelihood estimation for Bayesian Phylogenetic model selection.” Systematic Biology, 60(2): 150–160.
  • Xu, X. (2015). “Bayesian nonparametric inference for stochastic epidemic models.” Ph.D. thesis, University of Nottingham. URL http://eprints.nottingham.ac.uk/id/eprint/29170
  • Xu, X., Kypraios, T., and O’Neill, P. D. (2016). “Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.” Biostatistics, 17(4): 619–633.
  • Zhang, L. (2014). “Time-varying Individual-level Infectious Disease Models.” Ph.D. thesis, University of Guelph. URL http://hdl.handle.net/10214/7778