Bayesian Analysis

A Bayesian Approach to Statistical Shape Analysis via the Projected Normal Distribution

Luis Gutiérrez, Eduardo Gutiérrez-Peña, and Ramsés H. Mena

Full-text: Open access


This work presents a Bayesian predictive approach to statistical shape analysis. A modeling strategy that starts with a Gaussian distribution on the configuration space, and then removes the effects of location, rotation and scale, is studied. This boils down to an application of the projected normal distribution to model the configurations in the shape space, which together with certain identifiability constraints, facilitates parameter interpretation. Having better control over the parameters allows us to generalize the model to a regression setting where the effect of predictors on shapes can be considered. The methodology is illustrated and tested using both simulated scenarios and a real data set concerning eight anatomical landmarks on a sagittal plane of the corpus callosum in patients with autism and in a group of controls.

Article information

Bayesian Anal., Volume 14, Number 2 (2019), 427-447.

First available in Project Euclid: 23 June 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 62F15: Bayesian inference 62H35: Image analysis
Secondary: 62J05: Linear regression

Bookstein coordinates identifiability medical image shape regression

Creative Commons Attribution 4.0 International License.


Gutiérrez, Luis; Gutiérrez-Peña, Eduardo; Mena, Ramsés H. A Bayesian Approach to Statistical Shape Analysis via the Projected Normal Distribution. Bayesian Anal. 14 (2019), no. 2, 427--447. doi:10.1214/18-BA1113.

Export citation


  • Bookstein, F. (1986). “Size and shape spaces for landmark data in two dimensions.” Statistical Science, 1(2): 181–242.
  • Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., and Barale, F. (2003). “Brain anatomy and development in autism: review of MRI studies.” Brain Research Bulletin, 61: 557–569.
  • Casanova, M. F., El-Baz, A., Elnakib, A., Switala, A. E., Williams, E. L., Williams, D. L., Minshew, N. J., and Conturo, T. E. (2011). “Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals.” Autism, 15(2): 223–238.
  • Chen, M. H., Shao, Q. M., and Ibrahim, J. C. (2000). Monte Carlo Methods in Bayesian Computation. Springer, New York.
  • Cheng, W., Dryden, L., and Huang, X. (2015). “Bayesian registration of functions and curves.” Bayesian Analysis..
  • Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., Lainhart, J. E., Lord, C., Luna, B., Menon, V., Minshew, N. J., Monk, C. S., Mueller, S., Muller, R.-A., Nebel, M. B., Nigg, J. T., O’Hearn, K., Pelphrey, K. A., Peltier, S. J., Rudie, J. D., Sunaert, S., Thioux, M., Tyszka, J. M., Uddin, L. Q., Verhoeven, J. S., Wenderoth, N., Wiggins, J. L., Mostofsky, S. H., and Milham, M. P. (2014). “The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism.” Molecular Psychiatry, 19(6): 659–667.
  • Dryden, I. and Mardia, K. (1991). “General shape distributions in a plane.” Advances in Applied Probability, 23(2): 259–276.
  • Dryden, I. and Mardia, K. (2016). Statistical Shape Analysis, with Applications in R (2nd ed.). John Wiley and Sons, Chichester.
  • Geisser, S. and Eddy, W. F. (1979). “A predictive approach to model selection.” Journal of the American Statistical Association, 74: 153–160.
  • Goodall, C. (1991). “Procrustes methods in the statistical analysis of shape.” Journal of the Royal Statistical Society, Series B, 53: 285–339.
  • Gower, J. (1975). “Generalized Procrustes analysis.” Psychometrika, 40: 33–50.
  • Gutiérrez, L., Gutiérrez-Peña, E., and Mena, R. H. (2018). “Supplementary Material for ‘A Bayesian approach to statistical shape analysis via the projected normal distribution’.” Bayesian Analysis.
  • Hardan, A. Y., Minshew, N. J., and Keshavan, M. S. (2000). “Corpus callosum size in autism.” Neurology, 55: 1033–1036.
  • Hardan, A. Y., Pabalan, M., Gupta, N., Bansal, R., Melhem, N. M., Fedorov, S., Keshavan, M. S., and Minshew, N. J. (2009). “Corpus callosum volume in children with autism.” Psychiatry Research: Neuroimaging, 174: 57–61.
  • He, Q., Duan, Y., Karsch, K., and Miles, J. (2010). “Detecting corpus callosum abnormalities in autism based on anatomical landmarks.” Psychiatry Research: Neuroimaging, 183: 126–132.
  • Hernandez-Stumpfhauser, D., Breit, F., and van der Woerd, M. (2016). “The general projected normal distribution of arbitrary dimension: Modeling and Bayesian inference.” Bayesian Analysis.
  • Jammalamadaka, S. R. and SenGupta, A. (2001). Topics is Circular Statistics. World Scientific.
  • Kendall, D. (1977). “The difussion of shape.” Advances in Applied Probability, 9: 428–430.
  • Kent, J. (1994). “The complex Bingham distribution and shape analysis.” Journal of The Royal Statistical Society B, 56: 285–299.
  • Klassen, E., Srivastava, A., Mio, W., and Joshi, S. H. (2004). “Analysis of planar shapes using geodesic paths on shape spaces.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 26: 372–383.
  • Kume, A. and Welling, M. (2010). “Maximum likelihood estimation for the Offset–Normal shape distributions using EM.” Journal of Computational and Graphical Statistics, 19(3): 702–723.
  • Kurtek, S., Srivastava, A., Klassen, E., and Ding, Z. (2012). “Statistical modeling of curves using shapes and related features.” Journal of the American Statistical Association, 107: 1152–1165.
  • Leu, R. and Damien, P. (2014). “Bayesian shape analysis of the complex Bingham distribution.” Journal of Statistical Planning and Inference, 149: 183–200.
  • Mardia, K. and Dryden, I. L. (1999). “The complex Watson distribution and shape analysis.” Journal of the Royal Statistical Society, Series B, 61: 913–926.
  • Mardia, K., Fallaize, C., Barber, S., Jackson, R., and Theobald, D. (2013). “Bayesian alignment of similarity shapes.” Annals of Applied Statistics, 7: 989–1009.
  • Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley.
  • Mathai, A. M. and Provost, S. B. (1992). Quadratic Forms in Random Variables: Theory and Applications (Statistics: Textbooks and Monographs). CRC Press.
  • Micheas, A., Dey, D., and Mardia, K. (2006). “Complex elliptical distributions with application to shape analysis.” Journal of Statistical Planing and Inference, 136: 2961–2982.
  • Oslen, A. and Westneat, M. (2015). “StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set–up.” Methods in Ecology and Evolution, 6: 351–356.
  • Pau, G., Fuchs, F., Sklyar, O., Boutros, M., and Huber, W. (2010). “EBImage – an R package for image processing with applications to cellular phenotypes.” Bioinformatics, 26(7): 979–981.
  • Piven, J., Bailey, J., Ranson, B. J., and Arndt, S. (1997). “An MRI study of the corpus callosum in autism.” American Journal of Psychiatry, 154: 1051–1056.
  • Prigge, M., Lange, N., Bigler, E. D., Merkley, T. L., Neeley, E. S., Abildskov, T. J., Froehlich, A. L., Nielsen, J. A., Cooperrider, J. R., Cariello, A. N., Ravichandran, C., Alexander, A. L., and Lainhart, J. E. (2013). “Corpus callosum area in children and adults with autism.” Research in Autism Spectrum Disorders, 7: 221–234.
  • R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  • Small, C. G. (1996). The Statistical Theory of Shape. Berlin: Springer.
  • Srivastava, A., Joshi, S., Kaziska, D., and Wilson, D. (2005). “Applications of planar shape analysis to image-based inferences.” In Acoustics, Speech, and Signal Processing, 1037–1040. Proceedings. (ICASSP ’05). IEEE International Conference.
  • Vidal, C. N., Nicolson, R., DeVito, T. J., Hayashi, K. M., Geaga, J. A., Drost, D. J., Williamson, P. C., Rajakumar, N., Sui, Y., Dutton, R. A., Toga, A. W., and Thompson, P. M. (2006). “Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity.” Biological Psychiatry, 60(3): 218–225.
  • Whitcher, B., Schmid, V., and Thornton, A. (2011). “Working with the DICOM and NIfTI Data Standards in R.” Journal of Statistical Software, 44(6): 1–28. URL

Supplemental materials

  • Supplementary Material for ‘A Bayesian approach to statistical shape analysis via the projected normal distribution’. The online Supplementary Material contains the proofs of Theorems 1 and 2, as well as those of Propositions 1 and 2. It also contains Algorithm 1 from Section 4 and some images relating to the application described in Section 8.