Open Access
September 2018 A New Regression Model for Bounded Responses
Sonia Migliorati, Agnese Maria Di Brisco, Andrea Ongaro
Bayesian Anal. 13(3): 845-872 (September 2018). DOI: 10.1214/17-BA1079

Abstract

Aim of this contribution is to propose a new regression model for continuous variables bounded to the unit interval (e.g. proportions) based on the flexible beta (FB) distribution. The latter is a special mixture of two betas, which greatly extends the shapes of the beta distribution mainly in terms of asymmetry, bimodality and heavy tail behaviour. Its special mixture structure ensures good theoretical properties, such as strong identifiability and likelihood boundedness, quite uncommon for mixture models. Moreover, it makes the model computationally very tractable also within the Bayesian framework here adopted.

At the same time, the FB regression model displays easiness of interpretation as well as remarkable fitting capacity for a variety of data patterns, including unimodal and bimodal ones, heavy tails and presence of outliers. Indeed, simulation studies and applications to real datasets show a general better performance of the FB regression model with respect to competing ones, namely the beta (Ferrari and Cribari-Neto, 2004) and the beta rectangular (Bayes et al., 2012), in terms of precision of estimates, goodness of fit and posterior predictive intervals.

Citation

Download Citation

Sonia Migliorati. Agnese Maria Di Brisco. Andrea Ongaro. "A New Regression Model for Bounded Responses." Bayesian Anal. 13 (3) 845 - 872, September 2018. https://doi.org/10.1214/17-BA1079

Information

Published: September 2018
First available in Project Euclid: 25 October 2017

zbMATH: 06989970
MathSciNet: MR3807869
Digital Object Identifier: 10.1214/17-BA1079

Keywords: Beta regression , flexible beta , heavy tails , MCMC , Mixture models , Outliers , proportions

Vol.13 • No. 3 • September 2018
Back to Top