Bayesian Analysis

Modeling Skewed Spatial Data Using a Convolution of Gaussian and Log-Gaussian Processes

Hamid Zareifard, Majid Jafari Khaledi, Firoozeh Rivaz, and Mohammad Q. Vahidi-Asl

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

In spatial statistics, it is usual to consider a Gaussian process for spatial latent variables. As the data often exhibit non-normality, we introduce a novel skew process, named hereafter Gaussian-log Gaussian convolution (GLGC) to construct latent spatial models which provide great flexibility in capturing skewness. Some properties including closed-form expressions for the moments and the skewness of the GLGC process are derived. Particularly, we show that the mean square continuity and differentiability of the GLGC process are established by those of the Gaussian and log-Gaussian processes considered in its structure. Moreover, the usefulness of the proposed approach is demonstrated through the analysis of spatial data, including mixed ordinal and continuous outcomes that are jointly modeled through a common latent process. A fully Bayesian analysis is adopted to make inference. Our methodology is illustrated with simulation experiments as well as an environmental data set.

Article information

Source
Bayesian Anal. (2017), 27 pages.

Dates
First available in Project Euclid: 15 August 2017

Permanent link to this document
https://projecteuclid.org/euclid.ba/1502762659

Digital Object Identifier
doi:10.1214/17-BA1064

Keywords
spatial process skewness slice sampling mixed outcomes misalignment

Rights
Creative Commons Attribution 4.0 International License.

Citation

Zareifard, Hamid; Khaledi, Majid Jafari; Rivaz, Firoozeh; Vahidi-Asl, Mohammad Q. Modeling Skewed Spatial Data Using a Convolution of Gaussian and Log-Gaussian Processes. Bayesian Anal., advance publication, 15 August 2017. doi:10.1214/17-BA1064. https://projecteuclid.org/euclid.ba/1502762659


Export citation

References

  • Agarwal, D. K., Gelfand, A. E. (2005). Slice sampling for simulation based fitting of spatial data models.Statistics and Computing, 15(1): 61–69.
  • Aigner, D., Lovell, K., Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models.Journal of Econometrics, 6: 21–37.
  • Albert, J., Chib, S. (1997). Bayesian methods for cumulative, sequential, and two-step ordinal data regression models. Technical report. Department of Mathematics and Statistics, Bowling Green State University.
  • Allard, D., Naveau, P. (2007). A new spatial skew-normal random field model.Communications in Statistics: Theory and Methods, 36: 1821–1834.
  • Arellano-Valle, R. B., Azzalini, A. (2006). On the unification of families of skew-normal distributions.Scandinavian Journal of Statistics, 33: 561–574.
  • Asmussen, S., Jensen, J. L., Rojas-Nandayapa, L. (2016). On the Laplace transform of the log-normal distribution.Methodology and Computing in Applied Probability, 18: 441–458.
  • Azzalini, A. (1985). A class of distributions which includes the normal ones.Scandinavian Journal of Statistics, 12: 171–178.
  • Azzalini, A., Capitanio, A. (1999). Statistical applications of the multivariate skew-normal distribution.Journal of the Royal Statistical Association. Series B, 61: 579–602.
  • Barouch, E. Kaufman, G. M., Glasser, M. L. (1986). On sums of log-normal random variables.Studies in Applied Mathematics, 75: 37–55.
  • Berrocal, V. J., Gelfand, A. E., Holland, D. M. (2010). A bivariate spatio-temporal downscaler under space and time misalignment.Annals of Applied Statistics, 4: 1942–1975.
  • Chagneau, P., Mortier, F., Picard, N., Bacro, J. N. (2010). A hierarchical Bayesian model for spatial prediction of multivariate non-Gaussian random fields.Biometrics, 67: 97–105.
  • Chen, M.-H. (2004). Skewed link models for categorical response data. Chap. 8, pages 131–152 of: Genton, M. G. (ed.),Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman and Hall/CRC.
  • Chen, M.-H., Dey, D. K., Shao, Q.-M. (1999). A new skewed link model for dichotomous quantal response data.Journal of the American Statistical Association, 94: 1172–1186.
  • Gelfand, A. E. (2010). Misaligned spatial data: The change of support problem. In: Gelfand, AE.; Diggle, P.; Guttorp, P.; Fuentes, M., editors.Handbook of Spatial Statistics. Boca Raton, FL: CRC Press, 517–539.
  • Gelman, A., Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.Statistical Science, 7: 457–511.
  • Greene, W. H. (1990). A Gamma distributed stochastic frontier model.Journal of Econometrics, 46: 141–164.
  • Higgs, M. D., Hoeting, J. A. (2010). A clipped latent variable model for spatially correlated ordered categorical data.Computational Statistics and Data Analysis, 54 (8): 1999–2011.
  • Hogan, J. W., Tchernis, R. (2004). Bayesian factor analysis for spatially correlated data, with application to summarizing area-Level material deprivation from census data.Journal of the American Statistical Association, 99: 314–324.
  • Johnson, N. L., Kotz, S., Balakrishnan, N. (1994).Continuous Univariate Distributions. New York: John Wiley, 2 ed.
  • Kass, R. E., Raftery, A. E. (1995). Bayes factors.Journal of the American Statistical Association, 90: 773–795.
  • Kim, H., Mallick, B. K. (2004). A Bayesian prediction using the skew-Gaussian processes.Journal of Statistical Planning and Inference, 120: 85–101.
  • Lindgren, F., Rue, H., Lindstrom, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach.Journal of the Royal Statistical Association. Series B, 73: 423–498.
  • Neal, R. (2003). Slice sampling.Annals of Statistics, 31: 705–767.
  • Newton, M. A., Raftery, A. E. (1994). Approximate Bayesian inference by the weighted likelihood Bootstrap (with discussion).Journal of the Royal Statistical Society. Series B, 3: 3–48.
  • Recta, V., Haran, M., Rosenberger, J. L. (2012). A two-stage model for incidence and prevalence in point-level spatial count data.Environmetrics, 23(2): 162–174.
  • Ren, Q., Banerjee, S. (2013). Hierarchical factor models for large spatially misaligned data: A low-rank predictive process approach.Biometrics, 69: 19–30.
  • Roshandel, G., Sadjadi, A., Aarabi, M., Keshtkar, A., Sedaghat, S. M., Nouraie, S. M., Semnani, S., Malekzadeh, R. (2012). Cancer incidence in Golestan province: report of an ongoing population-based cancer registry in Iran, 2004–2008.Archives of Iranian Medicine, 15(4): 196–200.
  • Royle, J., Berliner, L. (1999). A hierarchical approach to multivariate spatial modeling and prediction.Journal of Agricultural, Biological, and Environmental Statistics, 4(1): 29–56.
  • Rue, H., Held, L. (2005).Gaussian Markov Random Fields: Theory and Applications. London: Chapman and Hall-CRC Press.
  • Schliep, E. M., Hoeting, J. A. (2013). Multilevel latent Gaussian process model for mixed discrete and continuous multivariate response data.Journal of Agricultural, Biological, and Environmental Statistics, 18: 492–513.
  • Silver, J., Ritchie, M. E., Smyth, G. K. (2009). Microarray background correction: maximum likelihood estimation for the normal-exponential convolution model.Biostatistics, 10: 352–363.
  • Stein, M. L. (1999).Interpolation of Spatial Data: Some Theory of Kriging. New York: Springer-Verlag.
  • Tanner, M. A., Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion).Journal of the American Statistical Association, 82: 528–550.
  • Wang, F., Wall, M. M. (2003). Generalized common spatial factor model.Biostatistics, 4: 569–582.
  • Whittle, P. (1954). On stationary processes in the plane.Biometrika, 41: 434–449.
  • Zareifard, H., Jafari Khaledi, M. (2013). Non-Gaussian modeling of spatial data using scale mixing of a unified skew-Gaussian process.Journal of Multivariate Analysis, 114: 16–28.
  • Zareifard, H., Khaledi, M. J., Rivaz, F. and Vahidi-Asl, M. Q. (2017). Supplementary Material of “Modeling Skewed Spatial Data Using a Convolution of Gaussian and Log-Gaussian Processes”.Bayesian Analysis.
  • Zhang, H., El-Shaarawi, A. (2010). On spatial skew-Gaussian processes and applications.Environmetrics, 21: 33–47.

Supplemental materials