Bayesian Analysis

Bayesian Analysis of Boundary and Near-Boundary Evidence in Econometric Models with Reduced Rank

Nalan Baştürk, Lennart Hoogerheide, and Herman K. van Dijk

Full-text: Open access

Abstract

Weak empirical evidence near and at the boundary of the parameter region is a predominant feature in econometric models. Examples are macroeconometric models with weak information on the number of stable relations, microeconometric models measuring connectivity between variables with weak instruments, financial econometric models like the random walk with weak evidence on the efficient market hypothesis and factor models for investment policies with weak information on the number of unobserved factors. A Bayesian analysis is presented of the common issue in these models, which refers to the topic of a reduced rank. Reduced rank is a boundary issue and its effect on the shape of the posteriors of the equation system parameters with a reduced rank is explored systematically. These shapes refer to ridges due to weak identification, fat tails and multimodality. Discussing several alternative routes to construct regularization priors, we show that flat posterior surfaces are integrable even though the marginal posterior tends to infinity if the parameters tend to the values corresponding to local non-identification. We introduce a lasso type shrinkage prior combined with orthogonal normalization which restricts the range of the parameters in a plausible way. This can be combined with other shrinkage, smoothness and data based priors using training samples or dummy observations. Using such classes of priors, it is shown how conditional probabilities of evidence near and at the boundary can be evaluated effectively. These results allow for Bayesian inference using mixtures of posteriors under the boundary state and the near-boundary state. The approach is applied to the estimation of education-income effect in all states of the US economy. The empirical results indicate that there exist substantial differences of this effect between almost all states. This may affect important national and state-wise policies on required length of education. The use of the proposed approach may, in general, lead to more accurate forecasting and decision analysis in other problems in economics, finance and marketing.

Article information

Source
Bayesian Anal., Volume 12, Number 3 (2017), 879-917.

Dates
First available in Project Euclid: 27 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.ba/1501120970

Digital Object Identifier
doi:10.1214/17-BA1061

Mathematical Reviews number (MathSciNet)
MR3694006

Zentralblatt MATH identifier
1384.62318

Rights
Creative Commons Attribution 4.0 International License.

Citation

Baştürk, Nalan; Hoogerheide, Lennart; van Dijk, Herman K. Bayesian Analysis of Boundary and Near-Boundary Evidence in Econometric Models with Reduced Rank. Bayesian Anal. 12 (2017), no. 3, 879--917. doi:10.1214/17-BA1061. https://projecteuclid.org/euclid.ba/1501120970


Export citation

References

  • Anderson, T. W. and Rubin, H. (1950). “The asymptotic properties of estimates of the parameters of a single equation in a complete system of stochastic equations.” The Annals of Mathematical Statistics, 570–582.
  • Anderson, T. W. and Rubin, H. (1956). “Statistical inference in factor analysis.” In Proceedings of the third Berkeley symposium on mathematical statistics and probability, volume 5, 1.
  • Angrist, J. D. and Krueger, A. B. (1991). “Does compulsory school attendance affect schooling and earnings?” The Quarterly Journal of Economics, 106(4): 979–1014.
  • Bartlett, M. S. (1957). “A Comment on D. V. Lindley’s Statistical Paradox.” Biometrika, 44(3/4): 533–534.
  • Baştürk, N., Çakmaklı, C., Ceyhan, S., and Van Dijk, H. K. (2014a). “On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14.” Œconomia, 4: 381–447.
  • Baştürk, N., Çakmaklı, C., Ceyhan, S. P., and Van Dijk, H. K. (2014b). “Posterior-Predictive Evidence on US Inflation using Extended Phillips Curve Models with non-filtered Data.” Journal of Applied Econometrics, 29(7): 1164–1182.
  • Baştürk, N., Grassi, S., Hoogerheide, L. F., and Van Dijk, H. K. (2016). “Time-varying combinations of Bayesian dynamic models and equity momentum strategies.” Technical Report 16-099/III, Tinbergen Institute.
  • Baştürk, N., Hoogerheide, L. F., and Van Dijk, H. K. (2017). “Supplementary Material for “Bayesian Analysis of Boundary and Near-Boundary Evidence in Econometric Models with Reduced Rank”.” Bayesian Analysis.
  • Baumeister, C. and Hamilton, J. D. (2015). “Sign restrictions, structural vector autoregressions, and useful prior information.” Econometrica, 83(5): 1963–1999.
  • Bauwens, L. and Van Dijk, H. K. (1990). “Bayesian limited information analysis revisited.” In Gabszewicz, J., Richard, J., and Wolsey, L. (eds.), Economic Decision-Making: Games, Econometrics and Optimisation: Contributions in Honour of Jacques H. Drèze, chapter 18, 385–424. Amsterdam: North-Holland.
  • Berger, J. O., Pericchi, L. R., et al. (2004). “Training samples in objective Bayesian model selection.” The Annals of Statistics, 32(3): 841–869.
  • Billio, M., Casarin, R., Ravazzolo, F., and Van Dijk, H. K. (2013). “Time-varying combinations of predictive densities using nonlinear filtering.” Journal of Econometrics, 177(2): 213–232.
  • Casarin, R., Grassi, S., Ravazzolo, F., and Van Dijk, H. K. (2015). “Dynamic predictive density combinations for large data sets in economics and finance.” Technical Report 2015-084/III, Tinbergen Institute.
  • Chan, J., Leon-Gonzalez, R., and Strachan, R. W. (2017). “Invariant inference and efficient computation in the static factor model.” Journal of the American Statistical Association, (just-accepted).
  • Chan, J. C., Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2012). “Time varying dimension models.” Journal of Business & Economic Statistics, 30(3): 358–367.
  • Del Negro, M. and Schorfheide, F. (2004). “Priors from general equilibrium models for VARs.” International Economic Review, 45(2): 643–673.
  • Del Negro, M. and Schorfheide, F. (2011). “Bayesian macroeconometrics.” In Geweke, J., Koop, G., and Van Dijk, H. K. (eds.), The Oxford handbook of Bayesian econometrics, 293–389. Oxford University Press: Oxford.
  • Dickey, J. (1971). “The weighted likelihood ratio, linear hypothesis on normal location parameters.” The Annals of Mathematical Statistics, 42: 240–223.
  • Doan, T., Litterman, R., and Sims, C. (1992). “Forecasting and conditional projections using realistic prior distributions.” Econometric Reviews, 3: 1–100.
  • Drèze, J. H. (1976). “Bayesian limited information analysis of the simultaneous equations model.” Econometrica: Journal of the Econometric Society, 1045–1075.
  • Eklund, J. and Karlsson, S. (2007). “Forecast combination and model averaging using predictive measures.” Econometric Reviews, 26(2–4): 329–363.
  • Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Springer Science & Business Media.
  • Gelfand, A. E. and Dey, D. K. (1994). “Bayesian model choice: asymptotics and exact calculations.” Journal of the Royal Statistical Society. Series B (Methodological), 501–514.
  • Gelman, A., Meng, X., and Stern, H. (1996). “Posterior predictive assessment of model fitness via realized discrepancies.” Statistica Sinica, 733–760.
  • Geweke, J. (1996). “Bayesian reduced rank regression in econometrics.” Journal of Econometrics, 75(1): 121–146.
  • Geweke, J., Koop, G., and Van Dijk, H. K. (2011). The Oxford handbook of Bayesian econometrics. Oxford University Press.
  • Giannone, D., Lenza, M., and Primiceri, G. (2015). “Prior selection for vector autoregressions.” The Review of Economics and Statistics, 97(2): 436–451.
  • Hamilton, J., Waggoner, D., and Zha, T. (2007). “Normalization in econometrics.” Econometric Reviews, 26(2–4): 221–252.
  • Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge University Press.
  • Herbst, E. P. and Schorfheide, F. (2015). Bayesian estimation of DSGE models. Princeton University Press.
  • Hoogerheide, L. and Van Dijk, H. K. (2013). “Bridging two key issues in Bayesian inference: The relationship between the Lindley paradox and non-elliptical credible sets.” In Singpurwalla, N., Dawid, P., and O’Hagan, A. (eds.), Festschrift for Dennis Lindley’s ninetienth birthday, volume 2, 511–530. Blurb Publishers.
  • Hoogerheide, L. F., Kaashoek, J. F., and Van Dijk, H. K. (2007). “On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks.” Journal of Econometrics, 139(1): 154–180.
  • Hoogerheide, L. F. and Van Dijk, H. K. (2001). “Comparison of the Anderson–Rubin test for overidentification and the Johansen test for cointegration.” Technical Report 2001-04, Econometric Institute Research Papers.
  • Hoogerheide, L. F. and Van Dijk, H. K. (2006). “A reconsideration of the Angrist-Krueger analysis on returns to education.” Econometric Institute Report.
  • Hoogerheide, L. F. and Van Dijk, H. K. (2008). “Possibly ill-behaved posteriors in econometric models.” Technical Report 08-036/4, Tinbergen Institute.
  • Jeffreys, H. (1939). The theory of probability. Oxford: The Clarendon Press, 1st edition.
  • Jochmann, M. and Koop, G. (2015). “Regime-switching cointegration.” Studies in Nonlinear Dynamics & Econometrics, 19(1): 35–48.
  • Jochmann, M., Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2013). “Stochastic search variable selection in vector error correction models with an application to a model of the UK macroeconomy.” Journal of Applied Econometrics, 28(1): 62–81.
  • Johansen, S. (1991). “Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models.” Econometrica, 59(6): 1551–1580.
  • Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press on Demand.
  • Kleibergen, F. and Paap, R. (2002). “Priors, posteriors and Bayes factors for a Bayesian analysis of cointegration.” Journal of Econometrics, 111(2): 223–249.
  • Kleibergen, F. and Van Dijk, H. K. (1994). “On the shape of the likelihood/posterior in cointegration models.” Econometric Theory, 10(3–4): 514–551.
  • Kleibergen, F. and Van Dijk, H. K. (1998). “Bayesian simultaneous equations analysis using reduced rank structures.” Econometric Theory, 14(06): 701–743.
  • Kleibergen, F. and Zivot, E. (2003). “Bayesian and classical approaches to instrumental variable regression.” Journal of Econometrics, 114(1): 29–72.
  • Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2011). “Bayesian inference in a time varying cointegration model.” Journal of Econometrics, 165(2): 210–220.
  • Koop, G., Strachan, R., Van Dijk, H. K., and Villani, M. (2006). “Bayesian approaches to cointegration.” In The Palgrave Handbook of Theoretical Econometrics, 871–898. Palgrave Macmillan.
  • Lindley, D. V. (1957). “A statistical paradox.” Biometrika, 44(1/2): 187–192.
  • Martin, G. M. (2001). “Bayesian analysis of a fractional cointegration model.” Econometric Reviews, 20(2): 217–234.
  • Martin, G. M. and Martin, V. L. (2000). “Bayesian inference in the triangular cointegration model using a Jeffreys prior.” Communications in Statistics – Theory and Methods, 29(8): 1759–1785.
  • Mengersen, K., Robert, C., and Titterington, M. (2011). Mixtures: estimation and applications, volume 896. John Wiley & Sons.
  • Pole, A., West, M., and Harrison, J. (1994). Applied Bayesian forecasting and time series analysis. CRC press.
  • Primiceri, G. E. (2005). “Time varying structural vector autoregressions and monetary policy.” The Review of Economic Studies, 72(3): 821–852.
  • Schotman, P. and Van Dijk, H. K. (1991a). “A Bayesian analysis of the unit root in real exchange rates.” Journal of Econometrics, 49: 195–238.
  • Schotman, P. C. and Van Dijk, H. K. (1991b). “On Bayesian routes to unit roots.” Journal of Applied Econometrics, 6(4): 387–401.
  • Sims, C. (1980). “Macroeconomics and reality.” Econometrica, 48(1): 1–48.
  • Sims, C. A. (2004). “Econometrics for Policy Analysis: Progress and Regress.” De Economist, 152(2): 167–175.
  • Sims, C. A. (2005). “Dummy Observation Priors Revisited.” Manuscript, Princeton University. http://sims.princeton.edu/yftp/DummyObs/DumObsPrior.pdf
  • Sims, C. A. (2007). “Thinking about instrumental variables.” Manuscript, Princeton University. http://sims.princeton.edu/yftp/IV/IV.pdf
  • Sims, C. A. (2008). “Making macro models behave reasonably.” Manuscript, Princeton University. http://sims.princeton.edu/yftp/ReasonableModels/MakingReasonable.pdf
  • Sims, C. A. and Zha, T. (1998). “Bayesian methods for dynamic multivariate models.” International Economic Review, 949–968.
  • Strachan, R. and Van Dijk, H. K. (2004). “Valuing structure, model uncertainty and model averaging in vector autoregressive processes.” Technical Report EI 2004-23, Econometric Institute.
  • Strachan, R. and Van Dijk, H. K. (2013). “Evidence on features of a DSGE business cycle model from Bayesian model averaging.” International Economic Review, 54(1): 385–402.
  • Strachan, R. W. (2003). “Valid Bayesian estimation of the cointegrating error correction model.” Journal of Business & Economic Statistics, 21(1): 185–195.
  • Strachan, R. W. and Inder, B. (2004). “Bayesian analysis of the error correction model.” Journal of Econometrics, 123(2): 307–325.
  • Sugita, K. et al. (2016). “Bayesian inference in Markov switching vector error correction model.” Economics Bulletin, 36(3): 1534–1546.
  • Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso.” Journal of the Royal Statistical Society. Series B (Methodological), 267–288.
  • Tuyl, F., Gerlach, R., and Mengersen, K. (2008). “A comparison of Bayes–Laplace, Jeffreys, and other priors: the case of zero events.” The American Statistician, 62(1): 40–44.
  • Uhlig, H. (1994). “On Jeffreys prior when using the exact likelihood function.” Econometric Theory, 633–644.
  • Van Dijk, H. K. and Kloek, T. (1980). “Further experience in Bayesian analysis using Monte Carlo integration.” Journal of Econometrics, 14(3): 307–328.
  • Verdinelli, I. and Wasserman, L. (1995). “Computing Bayes factors using a generalization of the Savage-Dickey Density Ratio.” Journal of the American Statistical Association, 90: 614–618.
  • Villani, M. (1998). “On the representation of ignorance regarding a matrix of reduced rank.” Technical report, Stockholm University, Department of Statistics.
  • Villani, M. (2000). “Aspects of Bayesian cointegration.” Ph.D. thesis, Stockholm University, Sweeden.
  • Villani, M. (2005). “Bayesian reference analysis of cointegration.” Econometric Theory, 21(02): 326–357.
  • Villani, M. (2009). “Steady-state priors for vector autoregressions.” Journal of Applied Econometrics, 24(4): 630–650.
  • Zellner, A., Ando, T., Baştürk, N., Hoogerheide, L., and Van Dijk, H. K. (2014). “Bayesian analysis of instrumental variable models: Acceptance-rejection within direct Monte Carlo.” Econometric Reviews, 33: 3–35.
  • Zellner, A., Bauwens, L., and Van Dijk, H. K. (1988). “Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo methods.” Journal of Econometrics, 38(1): 39–72.

Supplemental materials