Bayesian Analysis

Approximation of Bayesian Predictive p-Values with Regression ABC

David J. Nott, Christopher C. Drovandi, Kerrie Mengersen, and Michael Evans

Full-text: Open access


In the Bayesian framework a standard approach to model criticism is to compare some function of the observed data to a reference predictive distribution. The result of the comparison can be summarized in the form of a p-value, and computation of some kinds of Bayesian predictive p-values can be challenging. The use of regression adjustment approximate Bayesian computation (ABC) methods is explored for this task. Two problems are considered. The first is approximation of distributions of prior predictive p-values for the purpose of choosing weakly informative priors in the case where the model checking statistic is expensive to compute. Here the computation is difficult because of the need to repeatedly sample from a prior predictive distribution for different values of a prior hyperparameter. The second problem considered is the calibration of posterior predictive p-values so that they are uniformly distributed under some reference distribution for the data. Computation is difficult because the calibration process requires repeated approximation of the posterior for different data sets under the reference distribution. In both these problems we argue that high accuracy in the computations is not required, which makes fast approximations such as regression adjustment ABC very useful. We illustrate our methods with several examples.

Article information

Bayesian Anal. Volume 13, Number 1 (2018), 59-83.

First available in Project Euclid: 16 November 2016

Permanent link to this document

Digital Object Identifier

ABC Bayesian inference Bayesian p-values posterior predictive check prior predictive check weakly informative prior

Creative Commons Attribution 4.0 International License.


Nott, David J.; Drovandi, Christopher C.; Mengersen, Kerrie; Evans, Michael. Approximation of Bayesian Predictive $p$ -Values with Regression ABC. Bayesian Anal. 13 (2018), no. 1, 59--83. doi:10.1214/16-BA1033.

Export citation


  • Bayarri, M. J. and Berger, J. O. (2000). “P values for composite null models (with discussion).”Journal of the American Statistical Association, 95: 1127–1142.
  • Bayarri, M. J. and Castellanos, M. E. (2007). “Bayesian checking of the second levels of hierarchical models.”Statistical Science, 22: 322–343.
  • Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). “Approximate Bayesian computation in population genetics.”Genetics, 162: 2025–2035.
  • Blum, M. G. B. (2010). “Approximate Bayesian computation: a nonparametric perspective.”Journal of the American Statistical Association, 105(491): 1178–1187.
  • Blum, M. G. B. and François, O. (2010). “Non-linear regression models for approximate Bayesian computation.”Statistics and Computing, 20: 63–75.
  • Bowman, A. W. and Azzalini, A. (2014). “R package sm: nonparametric smoothing methods (version 2.2–5.4).”
  • Box, G. E. P. (1980). “Sampling and Bayes’ inference in scientific modelling and robustness (with discussion).”Journal of the Royal Statistical Society, Series A, 143: 383–430.
  • Chopin, N. (2002). “A sequential particle filter method for static models.”Biometrika, 89(3): 539–551.
  • Csilléry, K., François, O., and Blum, M. G. B. (2012). “ABC: an R package for approximate Bayesian computation (ABC).”Methods in Ecology and Evolution, 3: 475–479.
  • Dahl, F. A., Gåsemyr, J., and Natvig, B. (2007). “A robust conflict measure of inconsistencies in Bayesian hierarchical models.”Scandinavian Journal of Statistics, 34: 816–828.
  • Del Moral, P., Doucet, A., and Jasra, A. (2006). “Sequential Monte Carlo samplers.”Journal of the Royal Statistical Society, Series B, 68(3): 411–436.
  • Evans, M. and Jang, G. H. (2010). “Invariant P-values for model checking.”The Annals of Statistics, 38: 512–525.
  • Evans, M. and Jang, G. H. (2011). “Weak informativity and the information in one prior relative to another.”Statistical Science, 26: 423–439.
  • Evans, M. and Moshonov, H. (2006). “Checking for prior-data conflict.”Bayesian Analysis, 1: 893–914.
  • Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.”Bayesian Analysis, 1: 1–19.
  • Gelman, A. (2013). “Two simple examples for understanding posterior p-values whose distributions are far from unform.”Electronic Journal of Statistics, 7: 2595–2602.
  • Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y.-S. (2008). “A weakly informative default prior distribution for logistic and other regression models.”The Annals of Applied Statistics, 2: 1360–1383.
  • Gelman, A., Meng, X.-L., and Stern, H. (1996). “Posterior predictive assessment of model fitness via realized discrepancies.”Statistica Sinica, 6: 733–807.
  • Gåsemyr, J. and Natvig, B. (2009). “Extensions of a conflict measure of inconsistencies in Bayesian hierarchical models.”Scandinavian Journal of Statistics, 36: 822–838.
  • Guttman, I. (1967). “The use of the concept of a future observation in goodness-of-fit problems.”Journal of the Royal Statistical Society, Series B, 29: 83–100.
  • Hjort, N. L., Dahl, F. A., and Steinbakk, G. H. (2006). “Post-processing posterior predictive p-values.”Journal of the American Statistical Association, 101: 1157–1174.
  • Lebreton, J.-D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992). “Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies.”Ecological Monographs, 62(1): 67–118.
  • Marin, J.-M., Pudlo, P., and Robert, C. P. (2015). “Likelihood-free Model Choice.”arXiv:1503.07689.
  • Marin, J.-M., Pudlo, P., Robert, C. P., and Ryder, R. (2011). “Approximate Bayesian computational methods.”Statistics and Computing, 21: 289–291.
  • Marshall, E. C. and Spiegelhalter, D. J. (2007). “Identifying outliers in Bayesian hierarchical models: a simulation-based approach.”Bayesian Analysis, 2: 409–444.
  • Marzolin, G. (1988). “Polygynie du Cincle plongeur (Cinclus cinclus) dans les côtes de Lorraine.”Oiseau et la Revue Francaise d’Ornithologie, 58(4): 277–286.
  • McVinish, R., Mengersen, K., Nur, D., Rousseau, J., and Guihenneuc-Jouyaux, C. (2013). “Recentered importance sampling with applications to Bayesian model validation.”Journal of Computational and Graphical Statistics, 22: 215–228.
  • Moores, M. T., Drovandi, C. C., Mengersen, K., and Robert, C. P. (2015). “Pre-processing for approximate Bayesian computation in image analysis.”Statistics and Computing, 25: 23–33.
  • Nott, D. J., Drovandi, C. C., Mengersen, K., and Evans, M. (2016). “Supplementary material for “Approximation of Bayesian predictivep-values with regression ABC”.”Bayesian Analysis.
  • O’Hagan, A. (2003). “HSS model criticism (with discussion).” In Green, P. J., Hjort, N. L., and Richardson, S. T. (eds.),Highly Structured Stochastic Systems, 423–453. Oxford University Press.
  • Presanis, A. M., Ohlssen, D., Spiegelhalter, D. J., and Angelis, D. D. (2013). “Conflict diagnostics in directed acyclic graphs, with applications in Bayesian evidence synthesis.”Statistical Science, 28: 376–397.
  • Racine, A., Grieve, A. P., Flühler, H., and Smith, A. F. M. (1986). “Bayesian methods in practice: experiences in the pharmaceutical industry.”Journal of the Royal Statistical Society. Series C (Applied Statistics), 35: 93–150.
  • Robins, J. M., van der Vaart, A., and Ventura, V. (2000). “Asymptotic distribution of $p$-values in composite null models.”Journal of the American Statistical Association, 95: 1143–1156.
  • Rubin, D. B. (1984). “Bayesianly justifiable and relevant frequency calculations for the applied statistician.”Annals of Statistics, 12: 1151–1172.
  • Scheel, I., Green, P. J., and Rougier, J. C. (2011). “A graphical diagnostic for identifying influential model choices in Bayesian hierarchical models.”Scandinavian Journal of Statistics, 38(3): 529–550.
  • Steinbakk, G. H. and Storvik, G. O. (2009). “Posterior predictive p-values in Bayesian hierarchical models.”Scandinavian Journal of Statistics, 36: 320–336.
  • Wood, S. N. (2010). “Statistical inference for noisy nonlinear ecological dynamic systems.”Nature, 466(7310): 1102–1104.

Supplemental materials