Bayesian Analysis

Bayesian Estimation of Principal Components for Functional Data

Adam J. Suarez and Subhashis Ghosal

Full-text: Open access

Abstract

The area of principal components analysis (PCA) has seen relatively few contributions from the Bayesian school of inference. In this paper, we propose a Bayesian method for PCA in the case of functional data observed with error. We suggest modeling the covariance function by use of an approximate spectral decomposition, leading to easily interpretable parameters. We perform model selection, both over the number of principal components and the number of basis functions used in the approximation. We study in depth the choice of using the implied distributions arising from the inverse Wishart prior and prove a convergence theorem for the case of an exact finite dimensional representation. We also discuss computational issues as well as the care needed in choosing hyperparameters. A simulation study is used to demonstrate competitive performance against a recent frequentist procedure, particularly in terms of the principal component estimation. Finally, we apply the method to a real dataset, where we also incorporate model selection on the dimension of the finite basis used for modeling.

Article information

Source
Bayesian Anal. Volume 12, Number 2 (2017), 311-333.

Dates
First available in Project Euclid: 19 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.ba/1461092217

Digital Object Identifier
doi:10.1214/16-BA1003

Keywords
principal components covariance estimation functional data

Rights
Creative Commons Attribution 4.0 International License.

Citation

Suarez, Adam J.; Ghosal, Subhashis. Bayesian Estimation of Principal Components for Functional Data. Bayesian Anal. 12 (2017), no. 2, 311--333. doi:10.1214/16-BA1003. https://projecteuclid.org/euclid.ba/1461092217


Export citation

References

  • Ash, R. (1965). Information Theory. Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers.
  • Banerjee, S. and Ghosal, S. (2015). “Bayesian structure learning in graphical models.” Journal of Multivariate Analysis, 136: 147–162.
  • Behseta, S., Kass, R. E., and Wallstrom, G. L. (2005). “Hierarchical models for assessing variability among functions.” Biometrika, 92(2): 419–434.
  • Bishop, C. M. (1999). “Bayesian PCA.” Advances in Neural Information Processing Systems, 382–388.
  • Chib, S. (1995). “Marginal Likelihood from the Gibbs Output.” Journal of the American Statistical Association, 90(432): 1313–1321.
  • Ghosal, S., Ghosh, J. K., and Van Der Vaart, A. W. (2000). “Convergence rates of posterior distributions.” Annals of Statistics, 28(2): 500–531.
  • Ghosal, S. and van der Vaart, A. (2016). Fundamentals of Nonparametric Bayesian Inference. Cambridge University Press, to appear.
  • Green, P. J. (1995). “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.” Biometrika, 82(4): 711–732.
  • Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications, volume 200. Springer.
  • Jolliffe, I. T. (1986). Principal Component Analysis, volume 487. Springer-Verlag New York.
  • Lad, F. (1996). Operational Subjective Statistical Methods: a Mathematical, Philosophical, and Historical Introduction. Wiley Series in Probability and Statistics. Wiley.
  • Lang, S. and Brezger, A. (2004). “Bayesian P-splines.” Journal of Computational and Graphical Statistics, 13(1): 183–212.
  • Muirhead, R. J. (2009). Aspects of Multivariate Statistical Theory. Wiley–Interscience.
  • Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF–CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics.
  • Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer.
  • Shen, W., Tokdar, S. T., and Ghosal, S. (2013). “Adaptive Bayesian multivariate density estimation with Dirichlet mixtures.” Biometrika, 100(3): 623–640.
  • Tipping, M. E. and Bishop, C. M. (1999). “Probabilistic principal component analysis.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3): 611–622.
  • van der Linde, A. (2008). “Variational Bayesian functional PCA.” Computational Statistics & Data Analysis, 53(2): 517–533.
  • Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2013). “Fast covariance estimation for high-dimensional functional data.” arXiv:1306.5718.