Bayesian Analysis

Comment on Article by Page and Quintana

Carlo Gaetan, Simone A. Padoan, and Igor Prünster

Full-text: Open access


Page and Quintana (2016) introduce the novel methodology of spatial product partition models in order to explicitly model the partitioning of spatial locations, with the aim of balancing local and global spatial dependence. Here we first discuss Gibbs-type partitions and their connection to exchangeable product partition models and their possible use as building blocks of spatial product partition models. Then, adopting the viewpoint of extreme value theory, we focus on two approaches for modeling spatial extremes, namely hierarchical modeling based on a latent stochastic process and modeling based on max-stable processes. Additional insights and interesting findings may arise by developing the approach of Page and Quintana (2016) along these lines.

Article information

Bayesian Anal., Volume 11, Number 1 (2016), 307-314.

First available in Project Euclid: 29 January 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

asymptotic independence extreme value theory Gibbs-type partition hierarchical modeling max-stable random field upper-tail dependence coefficient function two parameter Poisson-Dirichlet partition


Gaetan, Carlo; Padoan, Simone A.; Prünster, Igor. Comment on Article by Page and Quintana. Bayesian Anal. 11 (2016), no. 1, 307--314. doi:10.1214/16-BA971C.

Export citation


  • Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes: Theory and Applications. New York: John Wiley & Sons.
  • Casson, E. and Coles, S. (1999). “Spatial regression models for extremes.” Extremes, 1: 449–468.
  • Coles, S. G. (2001). An Introduction to Statistical Modelling of Extreme Values. Springer, London.
  • Davison, A. C. and Gholamrezaee, M. M. (2012). “Geostatistics of extremes.” Proceedings of the Royal Society of London Series A, 468: 581–608.
  • Davison, A. C., Padoan, S., Ribatet, M., et al. (2012). “Statistical modeling of spatial extremes.” Statistical Science, 27: 161–186.
  • De Blasi, P., Favaro, S., Lijoi, A., Mena, R., Prünster, I., and Ruggiero, M. (2015). “Controlling the reinforcement in Bayesian non-parametric mixture models.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 37: 212–229.
  • de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer.
  • Gaetan, C. and Grigoletto, M. (2004). “Smoothing sample extremes with dynamic models.” Extremes, 7: 221–236.
  • Gnedin, A. and Pitman, J. (2005). “Exchangeable Gibbs partitions and Stirling triangles.” Zapiski Nauchnykh Seminarov Sankt-Peterburgskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklova (POMI) (transl. in Journal of Mathematical Sciences (New York) 138: 5674–5685 (2006)), 325: 83–102.
  • Hartigan, J. (1990). “Partition models.” Communications in Statistics, Part A – Theory and Methods, 19(8): 2745–2756.
  • Lijoi, A., Mena, R., and Prünster, I. (2007). “Controlling the reinforcement in Bayesian non-parametric mixture models.” Journal of the Royal Statistical Society, Series B, 69(4): 715–740.
  • Page, G. L. and Quintana, F. A. (2016). “Spatial product partition models.” Bayesian Analysis, XX: 1–34.
  • Pitman, J. (2006). Combinatorial Stochastic Processes. Ecole d’Eté de Probabilités de Saint-Flour XXXII, Lecture Notes in Mathematics, vol. 1875, Springer.
  • Sang, H. and Gelfand, A. E. (2009). “Hierarchical modeling for extreme values observed over space and time.” Environmental and Ecological Statistics, 16: 407–426.
  • Schlather, M. (2002). “Models for stationary max-stable random fields.” Extremes, 5: 33–44.

See also

  • Related item: Garritt L. Page, Fernando A. Quintana (2016). Spatial Product Partition Models. Bayesian Anal. Vol. 11, Iss. 1, 265–298.