Bayesian Analysis

Bayesian Registration of Functions and Curves

Wen Cheng, Ian L. Dryden, and Xianzheng Huang

Full-text: Open access

Abstract

Bayesian analysis of functions and curves is considered, where warping and other geometrical transformations are often required for meaningful comparisons. The functions and curves of interest are represented using the recently introduced square root velocity function, which enables a warping invariant elastic distance to be calculated in a straightforward manner. We distinguish between various spaces of interest: the original space, the ambient space after standardizing, and the quotient space after removing a group of transformations. Using Gaussian process models in the ambient space and Dirichlet priors for the warping functions, we explore Bayesian inference for curves and functions. Markov chain Monte Carlo algorithms are introduced for simulating from the posterior. We also compare ambient and quotient space estimators for mean shape, and explain their frequent similarity in many practical problems using a Laplace approximation. Simulation studies are carried out, as well as practical alignment of growth rate functions and shape classification of mouse vertebra outlines in evolutionary biology. We also compare the performance of our Bayesian method with some alternative approaches.

Article information

Source
Bayesian Anal., Volume 11, Number 2 (2016), 447-475.

Dates
First available in Project Euclid: 1 June 2015

Permanent link to this document
https://projecteuclid.org/euclid.ba/1433162661

Digital Object Identifier
doi:10.1214/15-BA957

Mathematical Reviews number (MathSciNet)
MR3471998

Zentralblatt MATH identifier
1357.62151

Keywords
ambient space Dirichlet Gaussian process Quotient space shape warp

Citation

Cheng, Wen; Dryden, Ian L.; Huang, Xianzheng. Bayesian Registration of Functions and Curves. Bayesian Anal. 11 (2016), no. 2, 447--475. doi:10.1214/15-BA957. https://projecteuclid.org/euclid.ba/1433162661


Export citation

References

  • Allassonnière, S., Amit, Y., and Trouvé, A. (2007). “Towards a coherent statistical framework for dense deformable template estimation.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1):3–29.
  • Allassonnière, S., Kuhn, E., and Trouvé, A. (2010). “Bayesian consistent estimation in deformable models using stochastic algorithms: applications to medical images.” Journal de la Société Française de Statistique, 151(1):1–16.
  • Bhattacharya, R. and Patrangenaru, V. (2003). “Large sample theory of intrinsic and extrinsic sample means on manifolds. I.” The Annals of Statistics, 31(1):1–29.
  • Bradley, S. P., Hax, A. C., and Magnanti, T. L. (1977). Applied Mathematical Programming. Addison-Wesley, Reading, MA.
  • Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • Cheng, W., Dryden, I. L., Hitchcock, D. B., and Le, H. (2014). “Analysis of proteomics data: Bayesian alignment of functions.” Electronic Journal of Statistics, 8:1734–1741.
  • Cheng, W., Dryden, I. L., and Huang, X. (2015). “Supplementary materials: Bayesian registration of functions and curves.” Bayesian Analysis.
  • Claeskens, G., Silverman, B. W., and Slaets, L. (2010). “A multiresolution approach to time warping achieved by a Bayesian prior-posterior transfer fitting strategy.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(5):673–694.
  • Czogiel, I., Dryden, I. L., and Brignell, C. J. (2011). “Bayesian matching of unlabeled marked point sets using random fields, with an application to molecular alignment.” The Annals of Applied Statistics, 5:2603–2629.
  • Dryden, I. L. (2014). shapes: Statistical shape analysis. R package version 1.1-10.
  • Dryden, I. L. and Mardia, K. V. (1991). “General shape distributions in a plane.” Advances in Applied Probability, 23:259–276.
  • Dryden, I. L. and Mardia, K. V. (1992). “Size and shape analysis of landmark data.” Biometrika, 79:57–68.
  • Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Wiley, Chichester.
  • Fréchet, M. (1948). “Les éléments aléatoires de nature quelconque dans un espace distancié.” Annales de l’Institut Henri Poincaré, 10:215–310.
  • Gasser, T., Müller, H. G., Köhler, W., Prader, A., Largo, R., and Molinari, L. (1985). “An analysis of the mid-growth and adolescent spurts of height based on acceleration.” Annals of Human Biology, 12:129–148.
  • Geyer, C. J. and Thompson, E. A. (1995). “Annealing Markov chain Monte Carlo with applications to ancestral inference.” Journal of the American Statistical Association, 90(431):909–920.
  • Glover, G. (1999). “Deconvolution of impulse response in event-related BOLD fMRI”. NeuroImage, 9(4):416–429.
  • Goodall, C. R. (1991). “Procrustes methods in the statistical analysis of shape (with discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 53:285–339.
  • Griffin, J. E. (2014). “An adaptive truncation method for inference in Bayesian nonparametric models.” Statistics and Computing, to appear.
  • Huckemann, S., Hotz, T., and Munk, A. (2010). “Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions.” Statistica Sinica, 20(1):1–58.
  • Ishwaran, H. and James, L. F. (2001). “Gibbs sampling methods for stick-breaking priors.” Journal of the American Statistical Association, 96(453):161–173.
  • James, G. M. (2007). “Curve alignment by moments.” The Annals of Applied Statistics, 1(2):480–501.
  • Jermyn, I. H., Kurtek, S., Klassen, E., and Srivastava, A. (2012). “Elastic shape matching of parameterized surfaces using square root normal fields.” In: Fitzgibbon, A. W., Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., editors, Computer Vision – ECCV 2012 – 12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part V, volume 7576 of Lecture Notes in Computer Science, pages 804–817. Springer.
  • Joshi, S., Klassen, E., Srivastava, A., and Jermyn, I. (2007). “A novel representation for Riemannian analysis of elastic curves in $\mathbb{R}^{n}$.” In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–7.
  • Kalli, M., Griffin, J., and Walker, S. (2011). “Slice sampling mixture models.” Statistics and Computing, 21(1):93–105.
  • Karcher, H. (1977). “Riemannian center of mass and mollifier smoothing.” Communications on Pure and Applied Mathematics, 30(5):509–541.
  • Kendall, D. G. (1984). “Shape manifolds, Procrustean metrics and complex projective spaces.” Bulletin of the London Mathematical Society, 16:81–121.
  • Kendall, D. G., Barden, D., Carne, T. K., and Le, H. (1999). Shape and Shape Theory. Wiley, Chichester.
  • Kendall, W. S. (1990). “The diffusion of Euclidean shape.” In: Grimmett, G. R. and Welch, D. J. A., editors, Disorder in Physical Systems, pages 203–217, Oxford. Oxford University Press.
  • Kenobi, K. and Dryden, I. L. (2012). “Bayesian matching of unlabeled point sets using Procrustes and configuration models.” Bayesian Analysis, 7(3):547–565.
  • Klassen, E., Srivastava, A., Mio, W., and Joshi, S. H. (2003). “Analysis of planar shapes using geodesic paths on shape spaces.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3):372–383.
  • Kneip, A. and Gasser, T. (1992). “Statistical tools to analyze data representing a sample of curves.” The Annals of Statistics, 20(3):1266–1305.
  • Kneip, A., Li, X., MacGibbon, K. B., and Ramsay, J. O. (2000). “Curve registration by local regression.” Canadian Journal of Statistics, 28(1):19–29.
  • Koch, I., Hoffmann, P., and Marron, J. S. (2014). “Proteomics profiles from mass spectrometry.” Electronic Journal of Statistics, 8(2):1703–1713.
  • Le, H.-L. (1991). “A stochastic calculus approach to the shape distribution induced by a complex normal model.” Mathematical Proceedings of the Cambridge Philosophical Society, 109:221–228.
  • Le, H.-L. and Kendall, D. G. (1993). “The Riemannian structure of Euclidean shape spaces: a novel environment for statistics.” The Annals of Statistics, 21:1225–1271.
  • Mardia, K. V. and Dryden, I. L. (1989). “The statistical analysis of shape data.” Biometrika, 76:271–282.
  • Molinari, L., Largo, R. H., and A., P. (1980). “Analysis of the growth spurt at age seven (mid-growth spurt).” Helvetica Paediatrica Acta, 35:325–334.
  • Ramsay, J. (2013). “Functional data analysis software.” Technical report, McGill University. http://www.psych.mcgill.ca/misc/fda/software.html.
  • Ramsay, J. O. and Li, X. (1998). “Curve registration.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2):351–363.
  • Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, Second Edition. Springer, New York.
  • Ramsay, J. O., Wickham, H., Graves, S., and Hooker, G. (2013). fda: Functional Data Analysis. R package version 2.4.0.
  • Silverman, B. W. (1995). “Incorporating parametric effects into functional principal components analysis.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 57(4):673–689.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). “Bayesian measures of model complexity and fit.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):583–639.
  • Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2011a). “Shape analysis of elastic curves in Euclidean spaces.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7):1415–1428.
  • Srivastava, A., Wu, W., Kurtek, S., Klassen, E., and Marron, J. S. (2011b). “Registration of functional data using the Fisher–Rao metric.” Technical report, Florida State University. arXiv:1103.3817v2 [math.ST].
  • Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.
  • Tang, R. and Müller, H.-G. (2008). “Pairwise curve synchronization for functional data.” Biometrika, 95(4):875–889.
  • Telesca, D. and Inoue, L. Y. T. (2008). “Bayesian hierarchical curve registration.” Journal of the American Statistical Association, 103(481):328–339.
  • Thakoor, N., Gao, J., and Jung, S. (2007). “Hidden Markov model-based weighted likelihood discriminant for 2-d shape classification.” IEEE Transactions on Image Processing, 16(11):2707–2719.
  • Tucker, J. D. (2014). fda: Functional Data Analysis. R package version 1.4.2.
  • Tuddenham, R. D. and Snyder, M. M. (1954). “Physical growth of California boys and girls from birth to age 18.” University of California Publications in Child Development, 1:183–364.
  • van der Vaart, A. W. (1998). Asymptotic Statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.
  • Walker, S. G. (2007). “Sampling the Dirichlet mixture model with slices.” Communications in Statistics – Simulation and Computation, 36(1):45–54.
  • Younes, L. (1998). “Computable elastic distances between shapes.” SIAM Journal on Applied Mathematics, 58(2):565–586 (electronic).
  • Zhou, R. R., Serban, N., Gebraeel, N., and Müller, H.-G. (2014). “A functional time warping approach to modeling and monitoring truncated degradation signals.” Technometrics, 56(1):67–77.

Supplemental materials