Bayesian Analysis
- Bayesian Anal.
- Volume 11, Number 2 (2016), 447-475.
Bayesian Registration of Functions and Curves
Wen Cheng, Ian L. Dryden, and Xianzheng Huang
Full-text: Open access
Abstract
Bayesian analysis of functions and curves is considered, where warping and other geometrical transformations are often required for meaningful comparisons. The functions and curves of interest are represented using the recently introduced square root velocity function, which enables a warping invariant elastic distance to be calculated in a straightforward manner. We distinguish between various spaces of interest: the original space, the ambient space after standardizing, and the quotient space after removing a group of transformations. Using Gaussian process models in the ambient space and Dirichlet priors for the warping functions, we explore Bayesian inference for curves and functions. Markov chain Monte Carlo algorithms are introduced for simulating from the posterior. We also compare ambient and quotient space estimators for mean shape, and explain their frequent similarity in many practical problems using a Laplace approximation. Simulation studies are carried out, as well as practical alignment of growth rate functions and shape classification of mouse vertebra outlines in evolutionary biology. We also compare the performance of our Bayesian method with some alternative approaches.
Article information
Source
Bayesian Anal., Volume 11, Number 2 (2016), 447-475.
Dates
First available in Project Euclid: 1 June 2015
Permanent link to this document
https://projecteuclid.org/euclid.ba/1433162661
Digital Object Identifier
doi:10.1214/15-BA957
Mathematical Reviews number (MathSciNet)
MR3471998
Zentralblatt MATH identifier
1357.62151
Keywords
ambient space Dirichlet Gaussian process Quotient space shape warp
Citation
Cheng, Wen; Dryden, Ian L.; Huang, Xianzheng. Bayesian Registration of Functions and Curves. Bayesian Anal. 11 (2016), no. 2, 447--475. doi:10.1214/15-BA957. https://projecteuclid.org/euclid.ba/1433162661
References
- Allassonnière, S., Amit, Y., and Trouvé, A. (2007). “Towards a coherent statistical framework for dense deformable template estimation.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1):3–29.Mathematical Reviews (MathSciNet): MR2301497
- Allassonnière, S., Kuhn, E., and Trouvé, A. (2010). “Bayesian consistent estimation in deformable models using stochastic algorithms: applications to medical images.” Journal de la Société Française de Statistique, 151(1):1–16.Mathematical Reviews (MathSciNet): MR2652787
- Bhattacharya, R. and Patrangenaru, V. (2003). “Large sample theory of intrinsic and extrinsic sample means on manifolds. I.” The Annals of Statistics, 31(1):1–29.Mathematical Reviews (MathSciNet): MR1962498
Zentralblatt MATH: 1020.62026
Digital Object Identifier: doi:10.1214/aos/1046294456
Project Euclid: euclid.aos/1046294456 - Bradley, S. P., Hax, A. C., and Magnanti, T. L. (1977). Applied Mathematical Programming. Addison-Wesley, Reading, MA.
- Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
- Cheng, W., Dryden, I. L., Hitchcock, D. B., and Le, H. (2014). “Analysis of proteomics data: Bayesian alignment of functions.” Electronic Journal of Statistics, 8:1734–1741.Mathematical Reviews (MathSciNet): MR3273588
Digital Object Identifier: doi:10.1214/14-EJS900C
Project Euclid: euclid.ejs/1414588156 - Cheng, W., Dryden, I. L., and Huang, X. (2015). “Supplementary materials: Bayesian registration of functions and curves.” Bayesian Analysis.Mathematical Reviews (MathSciNet): MR3471998
Digital Object Identifier: doi:10.1214/15-BA957
Project Euclid: euclid.ba/1433162661 - Claeskens, G., Silverman, B. W., and Slaets, L. (2010). “A multiresolution approach to time warping achieved by a Bayesian prior-posterior transfer fitting strategy.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(5):673–694.Mathematical Reviews (MathSciNet): MR2758241
Digital Object Identifier: doi:10.1111/j.1467-9868.2010.00752.x - Czogiel, I., Dryden, I. L., and Brignell, C. J. (2011). “Bayesian matching of unlabeled marked point sets using random fields, with an application to molecular alignment.” The Annals of Applied Statistics, 5:2603–2629.Mathematical Reviews (MathSciNet): MR2907128
Zentralblatt MATH: 1234.62141
Digital Object Identifier: doi:10.1214/11-AOAS486
Project Euclid: euclid.aoas/1324399608 - Dryden, I. L. (2014). shapes: Statistical shape analysis. R package version 1.1-10.
- Dryden, I. L. and Mardia, K. V. (1991). “General shape distributions in a plane.” Advances in Applied Probability, 23:259–276.Mathematical Reviews (MathSciNet): MR1104079
Zentralblatt MATH: 0724.60014
Digital Object Identifier: doi:10.2307/1427747 - Dryden, I. L. and Mardia, K. V. (1992). “Size and shape analysis of landmark data.” Biometrika, 79:57–68.Mathematical Reviews (MathSciNet): MR1158517
Zentralblatt MATH: 0753.62037
Digital Object Identifier: doi:10.1093/biomet/79.1.57 - Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Wiley, Chichester.Mathematical Reviews (MathSciNet): MR1646114
- Fréchet, M. (1948). “Les éléments aléatoires de nature quelconque dans un espace distancié.” Annales de l’Institut Henri Poincaré, 10:215–310.Mathematical Reviews (MathSciNet): MR27464
- Gasser, T., Müller, H. G., Köhler, W., Prader, A., Largo, R., and Molinari, L. (1985). “An analysis of the mid-growth and adolescent spurts of height based on acceleration.” Annals of Human Biology, 12:129–148.
- Geyer, C. J. and Thompson, E. A. (1995). “Annealing Markov chain Monte Carlo with applications to ancestral inference.” Journal of the American Statistical Association, 90(431):909–920.
- Glover, G. (1999). “Deconvolution of impulse response in event-related BOLD fMRI”. NeuroImage, 9(4):416–429.
- Goodall, C. R. (1991). “Procrustes methods in the statistical analysis of shape (with discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 53:285–339.Mathematical Reviews (MathSciNet): MR1108330
- Griffin, J. E. (2014). “An adaptive truncation method for inference in Bayesian nonparametric models.” Statistics and Computing, to appear.Mathematical Reviews (MathSciNet): MR3439383
Digital Object Identifier: doi:10.1007/s11222-014-9519-4 - Huckemann, S., Hotz, T., and Munk, A. (2010). “Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions.” Statistica Sinica, 20(1):1–58.
- Ishwaran, H. and James, L. F. (2001). “Gibbs sampling methods for stick-breaking priors.” Journal of the American Statistical Association, 96(453):161–173.Mathematical Reviews (MathSciNet): MR1952729
Zentralblatt MATH: 1014.62006
Digital Object Identifier: doi:10.1198/016214501750332758 - James, G. M. (2007). “Curve alignment by moments.” The Annals of Applied Statistics, 1(2):480–501.Mathematical Reviews (MathSciNet): MR2415744
Zentralblatt MATH: 1126.62001
Digital Object Identifier: doi:10.1214/07-AOAS127
Project Euclid: euclid.aoas/1196438028 - Jermyn, I. H., Kurtek, S., Klassen, E., and Srivastava, A. (2012). “Elastic shape matching of parameterized surfaces using square root normal fields.” In: Fitzgibbon, A. W., Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., editors, Computer Vision – ECCV 2012 – 12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part V, volume 7576 of Lecture Notes in Computer Science, pages 804–817. Springer.
- Joshi, S., Klassen, E., Srivastava, A., and Jermyn, I. (2007). “A novel representation for Riemannian analysis of elastic curves in $\mathbb{R}^{n}$.” In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–7.
- Kalli, M., Griffin, J., and Walker, S. (2011). “Slice sampling mixture models.” Statistics and Computing, 21(1):93–105.Mathematical Reviews (MathSciNet): MR2746606
Zentralblatt MATH: 1256.65006
Digital Object Identifier: doi:10.1007/s11222-009-9150-y - Karcher, H. (1977). “Riemannian center of mass and mollifier smoothing.” Communications on Pure and Applied Mathematics, 30(5):509–541.Mathematical Reviews (MathSciNet): MR442975
Zentralblatt MATH: 0354.57005
Digital Object Identifier: doi:10.1002/cpa.3160300502 - Kendall, D. G. (1984). “Shape manifolds, Procrustean metrics and complex projective spaces.” Bulletin of the London Mathematical Society, 16:81–121.Mathematical Reviews (MathSciNet): MR737237
Zentralblatt MATH: 0579.62100
Digital Object Identifier: doi:10.1112/blms/16.2.81 - Kendall, D. G., Barden, D., Carne, T. K., and Le, H. (1999). Shape and Shape Theory. Wiley, Chichester.Mathematical Reviews (MathSciNet): MR1891212
- Kendall, W. S. (1990). “The diffusion of Euclidean shape.” In: Grimmett, G. R. and Welch, D. J. A., editors, Disorder in Physical Systems, pages 203–217, Oxford. Oxford University Press.
- Kenobi, K. and Dryden, I. L. (2012). “Bayesian matching of unlabeled point sets using Procrustes and configuration models.” Bayesian Analysis, 7(3):547–565.Mathematical Reviews (MathSciNet): MR2981627
Digital Object Identifier: doi:10.1214/12-BA718
Project Euclid: euclid.ba/1346158775 - Klassen, E., Srivastava, A., Mio, W., and Joshi, S. H. (2003). “Analysis of planar shapes using geodesic paths on shape spaces.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3):372–383.
- Kneip, A. and Gasser, T. (1992). “Statistical tools to analyze data representing a sample of curves.” The Annals of Statistics, 20(3):1266–1305.Mathematical Reviews (MathSciNet): MR1186250
Zentralblatt MATH: 0785.62042
Digital Object Identifier: doi:10.1214/aos/1176348769
Project Euclid: euclid.aos/1176348769 - Kneip, A., Li, X., MacGibbon, K. B., and Ramsay, J. O. (2000). “Curve registration by local regression.” Canadian Journal of Statistics, 28(1):19–29.
- Koch, I., Hoffmann, P., and Marron, J. S. (2014). “Proteomics profiles from mass spectrometry.” Electronic Journal of Statistics, 8(2):1703–1713.Mathematical Reviews (MathSciNet): MR3273585
Zentralblatt MATH: 1305.62370
Digital Object Identifier: doi:10.1214/14-EJS900
Project Euclid: euclid.ejs/1414588153 - Le, H.-L. (1991). “A stochastic calculus approach to the shape distribution induced by a complex normal model.” Mathematical Proceedings of the Cambridge Philosophical Society, 109:221–228.Mathematical Reviews (MathSciNet): MR1075133
Zentralblatt MATH: 0723.60015
Digital Object Identifier: doi:10.1017/S0305004100069681 - Le, H.-L. and Kendall, D. G. (1993). “The Riemannian structure of Euclidean shape spaces: a novel environment for statistics.” The Annals of Statistics, 21:1225–1271.Mathematical Reviews (MathSciNet): MR1241266
Zentralblatt MATH: 0831.62003
Digital Object Identifier: doi:10.1214/aos/1176349259
Project Euclid: euclid.aos/1176349259 - Mardia, K. V. and Dryden, I. L. (1989). “The statistical analysis of shape data.” Biometrika, 76:271–282.Mathematical Reviews (MathSciNet): MR1016017
Zentralblatt MATH: 0666.62056
Digital Object Identifier: doi:10.1093/biomet/76.2.271 - Molinari, L., Largo, R. H., and A., P. (1980). “Analysis of the growth spurt at age seven (mid-growth spurt).” Helvetica Paediatrica Acta, 35:325–334.
- Ramsay, J. (2013). “Functional data analysis software.” Technical report, McGill University. http://www.psych.mcgill.ca/misc/fda/software.html.
- Ramsay, J. O. and Li, X. (1998). “Curve registration.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2):351–363.Mathematical Reviews (MathSciNet): MR1616045
Zentralblatt MATH: 0909.62033
Digital Object Identifier: doi:10.1111/1467-9868.00129 - Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, Second Edition. Springer, New York.Mathematical Reviews (MathSciNet): MR2168993
- Ramsay, J. O., Wickham, H., Graves, S., and Hooker, G. (2013). fda: Functional Data Analysis. R package version 2.4.0.
- Silverman, B. W. (1995). “Incorporating parametric effects into functional principal components analysis.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 57(4):673–689.Mathematical Reviews (MathSciNet): MR1354074
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). “Bayesian measures of model complexity and fit.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):583–639.Mathematical Reviews (MathSciNet): MR1979380
Zentralblatt MATH: 1067.62010
Digital Object Identifier: doi:10.1111/1467-9868.00353 - Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2011a). “Shape analysis of elastic curves in Euclidean spaces.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7):1415–1428.
- Srivastava, A., Wu, W., Kurtek, S., Klassen, E., and Marron, J. S. (2011b). “Registration of functional data using the Fisher–Rao metric.” Technical report, Florida State University. arXiv:1103.3817v2 [math.ST].arXiv: 1103.3817v2
- Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.Mathematical Reviews (MathSciNet): MR1697409
- Tang, R. and Müller, H.-G. (2008). “Pairwise curve synchronization for functional data.” Biometrika, 95(4):875–889.Mathematical Reviews (MathSciNet): MR2461217
Zentralblatt MATH: 05609554
Digital Object Identifier: doi:10.1093/biomet/asn047 - Telesca, D. and Inoue, L. Y. T. (2008). “Bayesian hierarchical curve registration.” Journal of the American Statistical Association, 103(481):328–339.Mathematical Reviews (MathSciNet): MR2420237
Zentralblatt MATH: 05564492
Digital Object Identifier: doi:10.1198/016214507000001139 - Thakoor, N., Gao, J., and Jung, S. (2007). “Hidden Markov model-based weighted likelihood discriminant for 2-d shape classification.” IEEE Transactions on Image Processing, 16(11):2707–2719.
- Tucker, J. D. (2014). fda: Functional Data Analysis. R package version 1.4.2.
- Tuddenham, R. D. and Snyder, M. M. (1954). “Physical growth of California boys and girls from birth to age 18.” University of California Publications in Child Development, 1:183–364.
- van der Vaart, A. W. (1998). Asymptotic Statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.
- Walker, S. G. (2007). “Sampling the Dirichlet mixture model with slices.” Communications in Statistics – Simulation and Computation, 36(1):45–54.Mathematical Reviews (MathSciNet): MR2370888
Zentralblatt MATH: 1113.62058
Digital Object Identifier: doi:10.1080/03610910601096262 - Younes, L. (1998). “Computable elastic distances between shapes.” SIAM Journal on Applied Mathematics, 58(2):565–586 (electronic).Mathematical Reviews (MathSciNet): MR1617630
Zentralblatt MATH: 0907.68158
Digital Object Identifier: doi:10.1137/S0036139995287685 - Zhou, R. R., Serban, N., Gebraeel, N., and Müller, H.-G. (2014). “A functional time warping approach to modeling and monitoring truncated degradation signals.” Technometrics, 56(1):67–77.Mathematical Reviews (MathSciNet): MR3176573
Digital Object Identifier: doi:10.1080/00401706.2013.805661
Supplemental materials
- Supplementary Materials: Bayesian Registration of Functions and Curves. Digital Object Identifier: doi:10.1214/15-BA957SUPP

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Analysis of AneuRisk65 data: Elastic shape registration of curves
Xie, Qian, Kurtek, Sebastian, and Srivastava, Anuj, Electronic Journal of Statistics, 2014 - A geometric approach to pairwise Bayesian alignment of functional data using importance sampling
Kurtek, Sebastian, Electronic Journal of Statistics, 2017 - Analysis of spike train data: Classification and Bayesian alignment
Cheng, Wen, Dryden, Ian L., Hitchcock, David B., and Le, Huiling, Electronic Journal of Statistics, 2014
- Analysis of AneuRisk65 data: Elastic shape registration of curves
Xie, Qian, Kurtek, Sebastian, and Srivastava, Anuj, Electronic Journal of Statistics, 2014 - A geometric approach to pairwise Bayesian alignment of functional data using importance sampling
Kurtek, Sebastian, Electronic Journal of Statistics, 2017 - Analysis of spike train data: Classification and Bayesian alignment
Cheng, Wen, Dryden, Ian L., Hitchcock, David B., and Le, Huiling, Electronic Journal of Statistics, 2014 - Nonrigid Registration of Monomodal MRI Using Linear Viscoelastic Model
Yang, Jian, Chen, Yang, Fan, Jingfan, and Tang, Songyuan, Abstract and Applied Analysis, 2013 - Analysis of spike train data: Comparison between the real and the simulated data
Lu, Xiaosun and Marron, J. S., Electronic Journal of Statistics, 2014 - Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance
Su, Jingyong, Kurtek, Sebastian, Klassen, Eric, and Srivastava, Anuj, The Annals of Applied Statistics, 2014 - Analysis of proteomics data: Bayesian alignment of functions
Cheng, Wen, Dryden, Ian L., Hitchcock, David B., and Le, Huiling, Electronic Journal of Statistics, 2014 - Defining probability density for a distribution of random functions
Delaigle, Aurore and Hall, Peter, The Annals of Statistics, 2010 - Curve alignment by moments
James, Gareth M., The Annals of Applied Statistics, 2007 - The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics
Le, Huiling and Kendall, David G., The Annals of Statistics, 1993