Bayesian Analysis

Optimal Design in Geostatistics under Preferential Sampling

Gustavo da Silva Ferreira and Dani Gamerman

Full-text: Open access

Abstract

This paper analyses the effect of preferential sampling in Geostatistics when the choice of new sampling locations is the main interest of the researcher. A Bayesian criterion based on maximizing utility functions is used. Simulated studies are presented and highlight the strong influence of preferential sampling in the decisions. The computational complexity is faced by treating the new local sampling locations as a model parameter and the optimal choice is then made by analysing its posterior distribution. Finally, an application is presented using rainfall data collected during spring in Rio de Janeiro. The results showed that the optimal design is substantially changed under preferential sampling effects. Furthermore, it was possible to identify other interesting aspects related to preferential sampling effects in estimation and prediction in Geostatistics.

Article information

Source
Bayesian Anal., Volume 10, Number 3 (2015), 711-735.

Dates
First available in Project Euclid: 20 February 2015

Permanent link to this document
https://projecteuclid.org/euclid.ba/1424441439

Digital Object Identifier
doi:10.1214/15-BA944

Mathematical Reviews number (MathSciNet)
MR3420820

Zentralblatt MATH identifier
1336.62217

Keywords
optimal design Geostatistics preferential sampling point process

Citation

Ferreira, Gustavo da Silva; Gamerman, Dani. Optimal Design in Geostatistics under Preferential Sampling. Bayesian Anal. 10 (2015), no. 3, 711--735. doi:10.1214/15-BA944. https://projecteuclid.org/euclid.ba/1424441439


Export citation

References

  • Alves, L., Marengo, J., Júnior, H., and Castro, C. (2005). “Beginning of the rainy season in southeastern Brazil: Part 1 – Observational studies (in Portuguese).” Revista Brasileira de Meteorologia, 20(3): 385–394.
  • Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). “Gaussian predictive process models for large spatial data sets.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(4): 825–848.
  • Bornn, L., Shaddick, G., and Zidek, J. (2012). “Modeling nonstationary processes through dimension expansion.” Journal of the American Statistical Association, 107(497): 281–289.
  • Boukouvalas, A., Cornford, D., and Stehlik, M. (2009). “Approximately optimal experimental design for heteroscedastic Gaussian process models.” Technical report, Nonlinear Complexity Research Group (NCRG).
  • Chang, H., Fu, A. Q., Le, N. D., and Zidek, J. V. (2007). “Designing environmental monitoring networks to measure extremes.” Environmental and Ecological Statistics, 14(3): 301–321.
  • Cressie, N. (1993). Statistics for spatial data. John Wiley and Sons, Inc.
  • DeGroot, M. H. (2005). Optimal statistical decisions, volume 82. Wiley-Interscience.
  • Diggle, P. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press.
  • Diggle, P. J. and Lophaven, S. (2006). “Bayesian geostatistical design.” Scandinavian Journal of Statistics, 33(1): 53–64.
  • Diggle, P. J., Menezes, R., and Su, T.-L. (2010). “Geostatistical inference under preferential sampling.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(2): 191–232.
  • Diggle, P. J. and Ribeiro, P. J. (2007). Model-based geostatistics. Springer.
  • Diggle, P. J., Tawn, J., and Moyeed, R. (1998). “Model-based geostatistics.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(3): 299–350.
  • Ding, M., Rosner, G. L., and Müller, P. (2008). “Bayesian optimal design for phase II screening trials.” Biometrics, 64(3): 886–894.
  • Fernández, J., Real, C., Couto, J., Aboal, J., and Carballeira, A. (2005). “The effect of sampling design on extensive bryomonitoring surveys of air pollution.” Science of the total environment, 337(1): 11–21.
  • Fuentes, M. (2002). “Spectral methods for nonstationary spatial processes.” Biometrika, 89(1): 197–210.
  • — (2007). “Approximate likelihood for large irregularly spaced spatial data.” Journal of the American Statistical Association, 102(477): 321–331.
  • Fuentes, M. and Smith, R. L. (2001). “A new class of nonstationary spatial models.” Technical report, North Carolina State University, Raleigh, NC.
  • Furrer, R., Genton, M. G., and Nychka, D. (2006). “Covariance tapering for interpolation of large spatial datasets.” Journal of Computational and Graphical Statistics, 15(3).
  • Gelfand, A. E., Sahu, S. K., and Holland, D. M. (2012). “On the effect of preferential sampling in spatial prediction.” Environmetrics, 23(7): 565–578.
  • Gumprecht, D., Müller, W. G., and Rodríguez-Díaz, J. M. (2009). “Designs for detecting spatial dependence.” Geographical Analysis, 41(2): 127–143.
  • Higdon, D., Swall, J., and Kern, J. (1999). “Non-stationary spatial modeling.” In: Bayesian statistics (J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith), 6(1): 761–768.
  • Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). “Log-Gaussian Cox processes.” Scandinavian Journal of Statistics, 25(3): 451–482.
  • Møller, J. and Waagepetersen, R. P. (2007). “Modern statistics for spatial point processes.” Scandinavian Journal of Statistics, 34(4): 643–684.
  • Müller, P. (1999). “Simulation-based optimal design.” In: Bayesian statistics (J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith), 6: 459–474.
  • Müller, P., Berry, D. A., Grieve, A. P., Smith, M., and Krams, M. (2007). “Simulation-based sequential Bayesian design.” Journal of Statistical Planning and Inference, 137(10): 3140–3150.
  • Müller, P., Sansó, B., and De Iorio, M. (2004). “Optimal Bayesian design by inhomogeneous Markov chain simulation.” Journal of the American Statistical Association, 99(467): 788–798.
  • Müller, W. G. and Stehlík, M. (2010). “Compound optimal spatial designs.” Environmetrics, 21(3-4): 354–364.
  • Pati, D., Reich, B. J., and Dunson, D. B. (2011). “Bayesian geostatistical modelling with informative sampling locations.” Biometrika, 98(1): 35–48.
  • Ripley, B. D. (2005). Spatial statistics, volume 575. Wiley.
  • Rue, H., Martino, S., and Chopin, N. (2009). “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2): 319–392.
  • Shaddick, G. and Zidek, J. V. (2014). “A case study in preferential sampling: Long term monitoring of air pollution in the UK.” Spatial Statistics, 9: 51–65.
  • Simpson, D., Illian, J., Lindgren, F., Sørbye, S., and Rue, H. (2011). “Going off grid: Computationally efficient inference for log-Gaussian Cox processes.” arXiv:1111.0641.
  • Stein, M. L., Chi, Z., and Welty, L. J. (2004). “Approximating likelihoods for large spatial data sets.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2): 275–296.
  • Stroud, J. R., Müller, P., and Rosner, G. L. (2001). “Optimal sampling times in population pharmacokinetic studies.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 50(3): 345–359.
  • Waagepetersen, R. (2004). “Convergence of posteriors for discretized log Gaussian Cox processes.” Statistics & Probability Letters, 66(3): 229–235.
  • Zhu, Z. and Stein, M. L. (2005). “Spatial sampling design for parameter estimation of the covariance function.” Journal of Statistical Planning and Inference, 134(2): 583–603.
  • Zidek, J. V., Shaddick, G., Taylor, C. G., et al. (2014). “Reducing estimation bias in adaptively changing monitoring networks with preferential site selection.” The Annals of Applied Statistics, 8(3): 1640–1670.
  • Zidek, J. V., Sun, W., and Le, N. D. (2000). “Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 49(1): 63–79.

See also

  • Related item: Michael Chipeta, Peter J. Diggle (2015). Comment on Article by Ferreira and Gamerman. Bayesian Anal. Vol. 10, Iss. 3, 737–739.
  • Related item: Noel Cressie, Raymond L. Chambers (2015). Comment on Article by Ferreira and Gamerman. Bayesian Anal. Vol. 10, Iss. 3, 741–748.
  • Related item: James V. Zidek (2015). Comment on Article by Ferreira and Gamerman. Bayesian Anal. Vol. 10, Iss. 3, 749–752.
  • Related item: Gustavo da Silva Ferreira, Dani Gamerman (2015). Rejoinder. Bayesian Anal. Vol. 10, Iss. 3, 753–758.